期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quantile Trends in Temperature Extremes in China 被引量:1
1
作者 FAN Li-Jun 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期304-308,共5页
A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to ex... A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to examine the trends not only in the mean but also in all parts of the distribution of several extreme temperature indices in China for the period 1960–2008. For China as a whole, the slopes in almost all the quantiles of the distribution showed a notable increase in the numbers of warm days and warm nights, and a significant decrease in the number of cool nights. These changes became much faster as the quantile increased. However, although the number of cool days exhibited a significant decrease in the mean trend estimated by classical linear regression, there was no obvious trend in the upper and lower quantiles. This finding suggests that examining the trends in different parts of the distribution of the time-series is of great importance. The spatial distribution of the trend in the 90 th quantile indicated that there was a pronounced increase in the numbers of warm days and warm nights, and a decrease in the number of cool nights for most of China, but especially in the northern and western parts of China, while there was no significant change for the number of cool days at almost all the stations. 展开更多
关键词 extreme temperature indices quantile trend quantile regression China
下载PDF
Updating Methods for Real Time Flood Forecasting: A Comparison through Senegal River Basin Upstream Bakel
2
作者 Soussou Sambou Seni Tamba +1 位作者 Clement Diatta Cheikh Mohamed Fadel Kebe 《Journal of Environmental Science and Engineering(A)》 2012年第1期58-72,共15页
Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulti... Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used. 展开更多
关键词 HYDROLOGY multiple linear regression models Kalman filtering recursive least squares stochastic gradient floodforecasting Senegal river head basin.
下载PDF
结合HASM和GWR方法的省级尺度近地表气温估算 被引量:6
3
作者 周佳 赵亚鹏 +1 位作者 岳天祥 卢涛 《地球信息科学学报》 CSCD 北大核心 2020年第10期2098-2107,共10页
卫星遥感反演得到的地表温度可用于近地表气温的估算,但现有方法的估算精度仍有进一步提升的空间。为了获取空间上连续且精度较高的近地表气温,本研究以四川省为例,首次将高精度曲面建模(HASM)用于遥感和气温实测数据的融合,并将综合了... 卫星遥感反演得到的地表温度可用于近地表气温的估算,但现有方法的估算精度仍有进一步提升的空间。为了获取空间上连续且精度较高的近地表气温,本研究以四川省为例,首次将高精度曲面建模(HASM)用于遥感和气温实测数据的融合,并将综合了气温、地表温度、海拔、坡度、坡向的地理加权回归(GWR)拟合结果作为HASM模型的初始温度场,进而采用此种结合HASM和GWR的求解算法(HASM-GWR),融合MOD11C3地表温度产品与190个气象台站的气温实测数据,开展省级尺度近地表气温估算,并通过比较HASM-GWR、GWR以及普通线性回归(OLS)3种方法的估算精度,评估各模型对近地表气温的估算效果。结果表明,相比于传统估算模型,采用HASM-GWR数据融合方法能有效提高近地表气温的估算精度。采用该方法的近地表气温估算残差,72%介于-1~1℃,90%介于-2~2℃;且与GWR和OLS模型相比,估算结果的均方根误差(RMSE)分别降低了25.42%和39.83%。 展开更多
关键词 近地表气温 卫星遥感数据 高精度曲面模型 地理加权回归模型 普通线性回归模型 数据融合 精度 四川省
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部