The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling an...The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system.展开更多
We first prove that for a finite dimensional non-semisimple Hopfalgebra H, the trivial H-module is not projective and so the almost split sequence ended with k exists. By this exact sequence, for all indecomposable H-...We first prove that for a finite dimensional non-semisimple Hopfalgebra H, the trivial H-module is not projective and so the almost split sequence ended with k exists. By this exact sequence, for all indecomposable H-module X, we can construct a special kind of exact sequence ending with it. The main aim of this paper is to determine when this special exact sequence is an almost split one. For this aim, we restrict H to be tmimodular and the square of its antipode to be an inner automorphism. As a special case, we give an application to the quantum double D(H)=(H^op)^*∞ H) of any non-semisimple Hopf algebra.展开更多
The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over b...The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).展开更多
With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods fo...With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.展开更多
This paper studies the global bifurcation and Hopf bifurcation of one kind of complicated financial system with different parameter combinations. Conditions on which bifurcation happens, and the critical system struct...This paper studies the global bifurcation and Hopf bifurcation of one kind of complicated financial system with different parameter combinations. Conditions on which bifurcation happens, and the critical system structure when the system transforms from one kind of topological structure to another are studied as well. The criterion for identifying Hopf bifurcation under different parameter combinations is also given. The chaotic character of this system under quasi-periodic force is finally studied. The bifurcation structure graphs are given when two parameters of the combination are fixed while the other parameter varies. The presence and stability of 2 and 3 dimensional torus bifurcation are studied. All of the Lyapunov exponents of the system with different bifurcation parameters and routes leading the system to chaos with different parameter combinations are studied. It is of important theoretical and practical meaning to probe the intrinsic mechanism of such continuous complicated financial system and to find the macro control policies for such kind of system.展开更多
In this paper, inertia is added to a simplified neuron system with time delay. The stability of the trivial equilibrium of the net- work is analyzed and the condition for the existence of Hopf bifurcation is obtained ...In this paper, inertia is added to a simplified neuron system with time delay. The stability of the trivial equilibrium of the net- work is analyzed and the condition for the existence of Hopf bifurcation is obtained by discussing the associated characteristic equation. Hopf bifurcation is investigated by using the perturbation scheme without the norm form theory and the center man- ifold theorem. Numerical simulations are performed to validate the theoretical results and chaotic behaviors are observed. Phase plots, time history plots, power spectra, and Poincar6 section are presented to confirm the chaoticity. To the best of our knowledge, the chaotic behavior in this paper is new to the previously published works.展开更多
In this paper, we study the number of limit cycles appeared in Hopf bifurcations of a Lienard system with multiple parameters. As an application to some polynomial Lienard systems of the form x= y, y= -gin(x) - fn...In this paper, we study the number of limit cycles appeared in Hopf bifurcations of a Lienard system with multiple parameters. As an application to some polynomial Lienard systems of the form x= y, y= -gin(x) - fn(X)y, we obtain a new lower bound of maximal number of limit cycles which appear in Hopf bifurcation for arbitrary degrees m and n.展开更多
基金National Natural Science Foundation of China (No 10372068)
文摘The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system.
基金Project (No. 10371107) supported by the National Natural ScienceFoundation of China
文摘We first prove that for a finite dimensional non-semisimple Hopfalgebra H, the trivial H-module is not projective and so the almost split sequence ended with k exists. By this exact sequence, for all indecomposable H-module X, we can construct a special kind of exact sequence ending with it. The main aim of this paper is to determine when this special exact sequence is an almost split one. For this aim, we restrict H to be tmimodular and the square of its antipode to be an inner automorphism. As a special case, we give an application to the quantum double D(H)=(H^op)^*∞ H) of any non-semisimple Hopf algebra.
文摘The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).
文摘With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.
基金This research was supported by the National Natural Science Foundation of China under Grant No.60641006.
文摘This paper studies the global bifurcation and Hopf bifurcation of one kind of complicated financial system with different parameter combinations. Conditions on which bifurcation happens, and the critical system structure when the system transforms from one kind of topological structure to another are studied as well. The criterion for identifying Hopf bifurcation under different parameter combinations is also given. The chaotic character of this system under quasi-periodic force is finally studied. The bifurcation structure graphs are given when two parameters of the combination are fixed while the other parameter varies. The presence and stability of 2 and 3 dimensional torus bifurcation are studied. All of the Lyapunov exponents of the system with different bifurcation parameters and routes leading the system to chaos with different parameter combinations are studied. It is of important theoretical and practical meaning to probe the intrinsic mechanism of such continuous complicated financial system and to find the macro control policies for such kind of system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11202068 and 11032009)
文摘In this paper, inertia is added to a simplified neuron system with time delay. The stability of the trivial equilibrium of the net- work is analyzed and the condition for the existence of Hopf bifurcation is obtained by discussing the associated characteristic equation. Hopf bifurcation is investigated by using the perturbation scheme without the norm form theory and the center man- ifold theorem. Numerical simulations are performed to validate the theoretical results and chaotic behaviors are observed. Phase plots, time history plots, power spectra, and Poincar6 section are presented to confirm the chaoticity. To the best of our knowledge, the chaotic behavior in this paper is new to the previously published works.
基金supported by National Natural Science Foundation of China (Grant No.11271261)
文摘In this paper, we study the number of limit cycles appeared in Hopf bifurcations of a Lienard system with multiple parameters. As an application to some polynomial Lienard systems of the form x= y, y= -gin(x) - fn(X)y, we obtain a new lower bound of maximal number of limit cycles which appear in Hopf bifurcation for arbitrary degrees m and n.