Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, land...Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types.展开更多
Maintaining the health and productivity of rangelands by controlling the livestock stocking rate to remain within carrying capacity is of significance to ensure sustainable management of rangeland ecosystems. But we k...Maintaining the health and productivity of rangelands by controlling the livestock stocking rate to remain within carrying capacity is of significance to ensure sustainable management of rangeland ecosystems. But we know little about the safe carrying capacity in particular rangeland landscapes. This has hampered efforts to use rangelands in a risk-averse manner in fluctuating rainfall environments, and especially in arid and semiarid areas. To address this lack of information, we took Kailash Sacred Landscape in China(KSL-China) as our study site and used remote sensing data, meteorological data and statistical data from 2000 to 2015 to analyze rangeland carrying capacity, stocking rate, and major influencing factors. Rangeland carrying capacity presented an increasing trend, while stocking rate was gradually decreasing, resulting in an increase of carrying rate in the study area. The increased carrying capacity was closely related to increased rainfall. Stocking rate declined owing to government regulations, particularly implementation in 2004 of the national policy of Returning Grazing Land to Grassland. There was a sharp reduction of livestock number below 200 000 standard sheep units(SU) after 2005. The decrease of stocking rate had a stronger effect on rangeland carrying rate than did the increase of carrying capacity. Ecosystem restoration programs have provided subsidies to pastoralists to encourage them to reduce livestock numbers. Our findings suggest that a safe rangeland carrying capacity is ca. 170 000 SU in KSL-China. There is a carrying capacity surplus of ca. 50 000 SU for safe animal husbandry development in the study area. More importantly, future climate warming and increases in grazing may jointly play a key role in affecting rangeland carrying capacity.展开更多
基金The paper is supported by National Nature Science Foundation of China (grant numbers: 39900019, and 30070129).
文摘Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types.
基金The GIZ and DIFID supported ICIMOD program of Kailash Sacred Landscape Conservation and Development Initiativethe National Key Research and Development Program of China(2016YFC0502001)
文摘Maintaining the health and productivity of rangelands by controlling the livestock stocking rate to remain within carrying capacity is of significance to ensure sustainable management of rangeland ecosystems. But we know little about the safe carrying capacity in particular rangeland landscapes. This has hampered efforts to use rangelands in a risk-averse manner in fluctuating rainfall environments, and especially in arid and semiarid areas. To address this lack of information, we took Kailash Sacred Landscape in China(KSL-China) as our study site and used remote sensing data, meteorological data and statistical data from 2000 to 2015 to analyze rangeland carrying capacity, stocking rate, and major influencing factors. Rangeland carrying capacity presented an increasing trend, while stocking rate was gradually decreasing, resulting in an increase of carrying rate in the study area. The increased carrying capacity was closely related to increased rainfall. Stocking rate declined owing to government regulations, particularly implementation in 2004 of the national policy of Returning Grazing Land to Grassland. There was a sharp reduction of livestock number below 200 000 standard sheep units(SU) after 2005. The decrease of stocking rate had a stronger effect on rangeland carrying rate than did the increase of carrying capacity. Ecosystem restoration programs have provided subsidies to pastoralists to encourage them to reduce livestock numbers. Our findings suggest that a safe rangeland carrying capacity is ca. 170 000 SU in KSL-China. There is a carrying capacity surplus of ca. 50 000 SU for safe animal husbandry development in the study area. More importantly, future climate warming and increases in grazing may jointly play a key role in affecting rangeland carrying capacity.