A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposi...A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.展开更多
The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications...The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications. These unique nanoparticles are of molecular purity and possess well defined formulas (i.e., specific numbers of metal atoms and ligands), resembling organic compounds. Crystallization of such molecularly pure nanoparticles into macroscopic single crystals allows for the determination of total structures of nanoparticles (i.e., the arrangement of metal core atoms and surface ligands) by X-ray crystallography. In this perspective article, we summarize recent efforts in doping and alloying gold nanoparticles with other metals, including Pd, Pt, Ag and Cu. With atomically precise gold nanoparticles, a specific number of foreign atoms (e.g., Pd, Pt) can be incorporated into the gold core, whereas a range of Ag and Cu substitutions is observed but, interestingly, the total number of metal atoms in the homogold nanoparticle is preserved. The heteroatom substitution of gold nanoparticles allows one to probe the optical, structural, and electronic properties truly at the single-atom level, and thus provides a wealth of information for understanding the intriguing properties of this new class of nanomaterials.展开更多
基金Supported by the Chinese National Key Basic Research Special Fund (No.2001CB6104) and the National Natural Science Foundation of China(No.20076027)
文摘A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.
文摘The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications. These unique nanoparticles are of molecular purity and possess well defined formulas (i.e., specific numbers of metal atoms and ligands), resembling organic compounds. Crystallization of such molecularly pure nanoparticles into macroscopic single crystals allows for the determination of total structures of nanoparticles (i.e., the arrangement of metal core atoms and surface ligands) by X-ray crystallography. In this perspective article, we summarize recent efforts in doping and alloying gold nanoparticles with other metals, including Pd, Pt, Ag and Cu. With atomically precise gold nanoparticles, a specific number of foreign atoms (e.g., Pd, Pt) can be incorporated into the gold core, whereas a range of Ag and Cu substitutions is observed but, interestingly, the total number of metal atoms in the homogold nanoparticle is preserved. The heteroatom substitution of gold nanoparticles allows one to probe the optical, structural, and electronic properties truly at the single-atom level, and thus provides a wealth of information for understanding the intriguing properties of this new class of nanomaterials.