Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. More...Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. Moreover, the non-Abelian geometric phase and the unitary matrix operation, which are tile key steps to realize the universal holonomic quantum computing in the degenerate subspace, are also obtained by means of choosing an evolution path properly.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11074154, 11074184, and 11075099the National Science Funding of Zhejiang Province under Grant No. Y6090001
文摘Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. Moreover, the non-Abelian geometric phase and the unitary matrix operation, which are tile key steps to realize the universal holonomic quantum computing in the degenerate subspace, are also obtained by means of choosing an evolution path properly.