A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with ...A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.展开更多
In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different ...In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61205068 and 61475133)the College Youth Talent Project of Hebei Province(No.BJ2014057)"Xin Rui Gong Cheng"Talent Project and the Excellent Youth Funds for School of Information Science and Engineering in Yanshan University(No.2014201)
文摘A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.
基金surpported by the National 863 Project of China (No.2007AA03Z413)the National Nature Science Foundation of China (No.60727004)the Project of Education Office of Shanxi Province of China (No.09JS041)
文摘In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.