Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite wa...The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite was synthesized by a seed-induced method without organic templates. The Zn-modified nano-ZSM-5 zeolite catalysts, xZ n/HNZ5 and y Zn/Al-HNZ5, were prepared by the conventional impregnation method and isomorphous substitution, respectively. The structure, chemical composition and acidity of the catalysts were characterized by XRD, XRF, N2 adsorption, SEM, NH3-TPD and Py-IR, while the catalytic properties were evaluated at 480 °C and a weight hourly space velocity(WHSV) of 2.0 h-1 in the aromatization procedure of 1-hexene. Compared with xZ n/HNZ5, y Zn/Al-HNZ5 exhibited smaller particles and higher dispersion of Zn species, which led to greater intergranular mesopore and homogeneous acidity distribution. Experimental results indicated that the synergy effect between the Brnsted and Lewis acid sites of the isomorphously substituted nano-ZSM-5 zeolites could significantly increase aromatics yield and improve catalytic stability in the 1-hexene aromatization.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm w...We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm were obtained by our solvent-vaporization plus hydrogen reduction method. The second metal played an important role in tuning the crystal structure and surface electronic structure of the Ir-based alloy catalyst. Among the lrFe, IrCo and lrNi alloy catalysts, Ni induced a mid-sized contrac- tion of the lr lattice, and gave the best HOR activity in both acidic and alkaline medium. In acidic medium, the weakening of the Ir-Had interaction caused by the electronic effect of M (M = Fe, Ni, Co) alloying is responsible for the enhancement of HOR activity. The oxophilic effect of the catalytic metal surface, which affects OHad adsorption and desorption and surface Had coverage, has a large impact on the HOR activity in the case of alkaline medium,展开更多
Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were s...Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were studied.These materials were chemically synthesized by reducing a Co salt with NaBH4.The amorphous Co-B alloy showed good electrocatalytic activity in oxygen evolution but its stability was poor.A hydrotalcite‐wrapped Co-B alloy was synthesized by mild oxidation.The electrocatalytic activity of this material in the oxygen evolution reaction was better than that of a commercially available Ir/C catalyst.展开更多
The Na2CO3-modified HZSM-5 zeolites were further treated by tetrapropylammonium hydroxide(TPAOH) solution. The effect of TPAOH concentration on the secondary crystallization process was investigated. The resulting sam...The Na2CO3-modified HZSM-5 zeolites were further treated by tetrapropylammonium hydroxide(TPAOH) solution. The effect of TPAOH concentration on the secondary crystallization process was investigated. The resulting samples were characterized by a complementary combination of X-ray diffraction, N2 adsorption/desorption, scanning electron microscopy, X-ray fluorescence spectroscopy, XPS, 27 Al and 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy, BET and temperature-programmed desorption techniques. The results showed that the secondary crystallization of the HZSM-5 zeolite could result in migration of non-framework species from the internal channels to the zeolite surface and their transformation into framework species. The catalytic activity of these modified samples for thiophene alkylation was evaluated. Both the activity and stability of the catalysts were improved after secondary crystallization.展开更多
A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that ...A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air.展开更多
The objective of this work is to study the reactive crystallization in an airlift-loop reactor (ALR) using the precipitation of Ni(OH)2 as a model reaction. The growth of Ni(OH)2 particles in an ALR and a stirre...The objective of this work is to study the reactive crystallization in an airlift-loop reactor (ALR) using the precipitation of Ni(OH)2 as a model reaction. The growth of Ni(OH)2 particles in an ALR and a stirred tank was quantified by scanning electronic microscope (SEM), X-ray diffraction (XRD), laser particle analyzer, tap densitometer and optical microscope, and the growth process of Ni(OH)2 particles is analyzed. It is found that the Ni(OH)2 particles prepared in an ALR have a better sphericity than those in a stirred tank and the growth of Ni(OH)2 particle tap density mainly depends on the size of crystallites: the bigger the size of crystallites, the bigger the tap density is. Based on these, the growth process of Ni(OH)2 particles in ALR is elaborated. Crystallites precipitated from solution aggregate to form large particles with much void. These constituting crystallites continue to grow up, that takes up the void inside particles and makes the tap densitv increase.展开更多
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ...Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.展开更多
Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determinati...Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds.展开更多
The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achiev...The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achieve a high‐energy conversion efficiency for the electrolysis of water.A good catalyst for water electrolysis should exhibit high catalytic activity,good stability,low cost and good scalability.Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditionally,it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER.Recently,catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface,which form catalytic centers for the reaction of the electrolysis of water.We summarize the recent advances of amorphous catalysts for HER,OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water.The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed.展开更多
Production of polysilicon by chemical vapor deposition of SiHCI3 with a fluidized bed reactor is a competitive technology. As equilibrium conversion can be approached in a fluidized bed reactor, a reliable thermodynam...Production of polysilicon by chemical vapor deposition of SiHCI3 with a fluidized bed reactor is a competitive technology. As equilibrium conversion can be approached in a fluidized bed reactor, a reliable thermodynamic analysis is very important. However, inconsistent thermodynamic analysis results have been reported in the lit- erature. The present work studied the effects of thermodynamic data and species selection, and recommended that JANAF was the best Cp data source and the minimum set of species included the following eight species: H2, HCI, SiC[4, SiCl2, SiHCI3, SiH2CI2, SiH3C] and Si. Then, the influence of operating conditions on the equilibrium was studied. For the SiHC|3-H2 system, both the yield of silicon and selectivity to silicon reached their maximum at (up to 1100 ℃), and low pressure and high H2 feed ratio were of benefit for silicon production. For the SiHCI3- SiCI4-H2 system, silicon could be produced only at 900-1400 ℃, and reducing pressure and increasing H2 feed ratio enhanced the yield of silicon. Meanwhile, the operation map for zero net by-production of SiCI4 by directly recycling the produced SiCl4 was determined.展开更多
A random walk Monte Carlo (RWMC) simulation model of catalytic particle was established on the basis of the structures of bismuth molybdate catalysts and mechanisms of catalytic reactions with propylene selective ox...A random walk Monte Carlo (RWMC) simulation model of catalytic particle was established on the basis of the structures of bismuth molybdate catalysts and mechanisms of catalytic reactions with propylene selective oxidation and ammoxidation. The simulation results show that rationality of the RWMC model is proved on the basis of pulse experimental data. One of the most remarkable factors affecting catalytic behavior is the transfer of bulk lattice oxygen, which decides the rate of ammonia-consuming and propylene-consuming. The selectivity of main products reaches the maximum after the reduction of catalysts to a certain degree. It is inferred that catalytic performance improves greatly if the ratio of capacity for dehydrogenation from adsorbed propylene molecule on catalytically active site of molybdenum metal-imido group (Mo=NH) to that on catalytically active site of molybdenum metal-oxo group (Mo=O) becomes much higher.展开更多
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金Project(21276067)supported by the National Natural Science Foundation of China
文摘The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite was synthesized by a seed-induced method without organic templates. The Zn-modified nano-ZSM-5 zeolite catalysts, xZ n/HNZ5 and y Zn/Al-HNZ5, were prepared by the conventional impregnation method and isomorphous substitution, respectively. The structure, chemical composition and acidity of the catalysts were characterized by XRD, XRF, N2 adsorption, SEM, NH3-TPD and Py-IR, while the catalytic properties were evaluated at 480 °C and a weight hourly space velocity(WHSV) of 2.0 h-1 in the aromatization procedure of 1-hexene. Compared with xZ n/HNZ5, y Zn/Al-HNZ5 exhibited smaller particles and higher dispersion of Zn species, which led to greater intergranular mesopore and homogeneous acidity distribution. Experimental results indicated that the synergy effect between the Brnsted and Lewis acid sites of the isomorphously substituted nano-ZSM-5 zeolites could significantly increase aromatics yield and improve catalytic stability in the 1-hexene aromatization.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
基金supported by the National Basic Research Program of China(973 Program,2012CB215500)the National Natural Science Foundation of China(21573029)the Fundamental Research Funds for the Central Universities(106112015CDJXY220002)
文摘We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm were obtained by our solvent-vaporization plus hydrogen reduction method. The second metal played an important role in tuning the crystal structure and surface electronic structure of the Ir-based alloy catalyst. Among the lrFe, IrCo and lrNi alloy catalysts, Ni induced a mid-sized contrac- tion of the lr lattice, and gave the best HOR activity in both acidic and alkaline medium. In acidic medium, the weakening of the Ir-Had interaction caused by the electronic effect of M (M = Fe, Ni, Co) alloying is responsible for the enhancement of HOR activity. The oxophilic effect of the catalytic metal surface, which affects OHad adsorption and desorption and surface Had coverage, has a large impact on the HOR activity in the case of alkaline medium,
基金supported by the Australian Research Council Discovery Project(DP110100550)~~
文摘Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were studied.These materials were chemically synthesized by reducing a Co salt with NaBH4.The amorphous Co-B alloy showed good electrocatalytic activity in oxygen evolution but its stability was poor.A hydrotalcite‐wrapped Co-B alloy was synthesized by mild oxidation.The electrocatalytic activity of this material in the oxygen evolution reaction was better than that of a commercially available Ir/C catalyst.
基金the financial support by the Natural Science Foundation of Liaoning Province of China (Grant No.201202126)the National Natural Science Foundation of China (Grant Nos. 21276253 and 21401093)
文摘The Na2CO3-modified HZSM-5 zeolites were further treated by tetrapropylammonium hydroxide(TPAOH) solution. The effect of TPAOH concentration on the secondary crystallization process was investigated. The resulting samples were characterized by a complementary combination of X-ray diffraction, N2 adsorption/desorption, scanning electron microscopy, X-ray fluorescence spectroscopy, XPS, 27 Al and 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy, BET and temperature-programmed desorption techniques. The results showed that the secondary crystallization of the HZSM-5 zeolite could result in migration of non-framework species from the internal channels to the zeolite surface and their transformation into framework species. The catalytic activity of these modified samples for thiophene alkylation was evaluated. Both the activity and stability of the catalysts were improved after secondary crystallization.
文摘A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air.
基金Supported by the National Key Research and Development Program(2016YFB0301701)the National Natural Science Foundation of China(21406236,91434126)+1 种基金the Major National Scientific Instrument Development Project(21427814)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘The objective of this work is to study the reactive crystallization in an airlift-loop reactor (ALR) using the precipitation of Ni(OH)2 as a model reaction. The growth of Ni(OH)2 particles in an ALR and a stirred tank was quantified by scanning electronic microscope (SEM), X-ray diffraction (XRD), laser particle analyzer, tap densitometer and optical microscope, and the growth process of Ni(OH)2 particles is analyzed. It is found that the Ni(OH)2 particles prepared in an ALR have a better sphericity than those in a stirred tank and the growth of Ni(OH)2 particle tap density mainly depends on the size of crystallites: the bigger the size of crystallites, the bigger the tap density is. Based on these, the growth process of Ni(OH)2 particles in ALR is elaborated. Crystallites precipitated from solution aggregate to form large particles with much void. These constituting crystallites continue to grow up, that takes up the void inside particles and makes the tap densitv increase.
基金Project(12C0379) supported by Scientific Research Fund of Hunan Province,China
文摘Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.
基金supported by the National Key Basic Research Program of China (2016YFA0300102)the National Natural Science Foundation of China (No.11675179,No.U1532142,and No.11434009)the Fundamental Research Funds for the Central Universities
文摘Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds.
基金the financial support from Chinese Scholarship Council (CSC)the support from Australian Research Council (ARC) Future Fellowship scheme
文摘The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achieve a high‐energy conversion efficiency for the electrolysis of water.A good catalyst for water electrolysis should exhibit high catalytic activity,good stability,low cost and good scalability.Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditionally,it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER.Recently,catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface,which form catalytic centers for the reaction of the electrolysis of water.We summarize the recent advances of amorphous catalysts for HER,OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water.The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed.
基金Supported by the Beijing New Star Project on Science & Technology of China(2009B35)the Program for New Century Excellent Talents in University(NCET-12-0297)
文摘Production of polysilicon by chemical vapor deposition of SiHCI3 with a fluidized bed reactor is a competitive technology. As equilibrium conversion can be approached in a fluidized bed reactor, a reliable thermodynamic analysis is very important. However, inconsistent thermodynamic analysis results have been reported in the lit- erature. The present work studied the effects of thermodynamic data and species selection, and recommended that JANAF was the best Cp data source and the minimum set of species included the following eight species: H2, HCI, SiC[4, SiCl2, SiHCI3, SiH2CI2, SiH3C] and Si. Then, the influence of operating conditions on the equilibrium was studied. For the SiHC|3-H2 system, both the yield of silicon and selectivity to silicon reached their maximum at (up to 1100 ℃), and low pressure and high H2 feed ratio were of benefit for silicon production. For the SiHCI3- SiCI4-H2 system, silicon could be produced only at 900-1400 ℃, and reducing pressure and increasing H2 feed ratio enhanced the yield of silicon. Meanwhile, the operation map for zero net by-production of SiCI4 by directly recycling the produced SiCl4 was determined.
基金国家自然科学基金,the Fundamental Research Foundation of SINOPEC
文摘A random walk Monte Carlo (RWMC) simulation model of catalytic particle was established on the basis of the structures of bismuth molybdate catalysts and mechanisms of catalytic reactions with propylene selective oxidation and ammoxidation. The simulation results show that rationality of the RWMC model is proved on the basis of pulse experimental data. One of the most remarkable factors affecting catalytic behavior is the transfer of bulk lattice oxygen, which decides the rate of ammonia-consuming and propylene-consuming. The selectivity of main products reaches the maximum after the reduction of catalysts to a certain degree. It is inferred that catalytic performance improves greatly if the ratio of capacity for dehydrogenation from adsorbed propylene molecule on catalytically active site of molybdenum metal-imido group (Mo=NH) to that on catalytically active site of molybdenum metal-oxo group (Mo=O) becomes much higher.