Rod-shaped PbW O4 microcrystals of length 1 μm were fabricated by a hydrothermal route and subsequent calcination. Pt nanoparticles(NPs) of different contents(0.5 wt%,1 wt% and 2 wt%) were subsequently deposited ...Rod-shaped PbW O4 microcrystals of length 1 μm were fabricated by a hydrothermal route and subsequent calcination. Pt nanoparticles(NPs) of different contents(0.5 wt%,1 wt% and 2 wt%) were subsequently deposited on the PbW O4 microcrystals,producing robust Pt/PbW O4 composite microcrystals. The PbW O4 microcrystals and Pt/PbW O4 photocatalysts were characterized by X-ray diffraction,N2 sorption measurements,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron,photoluminescence,Fourier-transform infrared,and ultraviolet-visible diffuse reflectance spectroscopies. The photocatalytic performances of the catalysts were evaluated by the consecutive photocatalytic degradation of acid orange II dye. The Pt/PbW O4 composite microcrystals exhibited high photocatalytic activity and stability. The deposition of Pt NPs produced surface plasmon resonance(SPR),which induced a large visible light absorption. A Pt NP content of 1-2 wt% resulted in an ~2 times increase in photocatalytic activity,compared with the activity of Pt/PbW O4. The crystal structure and high crystallinity of PbW O4 resulted in its favorable photocatalytic property,and the SPR effect of the Pt NPs promoted visible light harvesting. The Pt NPs also enhanced the separation of photo-generated electrons and holes,which further promoted the photocatalytic reaction.展开更多
Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained micro...Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC.展开更多
Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals ...Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals based on the relationship between the crystallization time and temperature in the Arrhenius equation. Compared to the conventional hydrothermal synthesis of zeolite omega(72 h at room temperature and 240 h at 100℃, MAZ-100), the crystallization of zeolite omega presented in this work only requires a very short time interval(5 h at 180℃, MAZ-180). Physicochemical characterizations, including XRD, SEM, N2 sorption isotherms, and 27 Al MAS NMR show that the product of zeolite omega(MAZ-180) has good crystallinity and uniform nanocrystals. More importantly, after the loading of Pt nanoparticles(0.5 wt%), the Pt/H-MAZ-180 catalyst exhibits higher isomer selectivity and lower cracking selectivity than those of the Pt/H-MAZ-100 catalyst in the hydroisomerization of n-dodecane. These results suggest the potential applications of these omega nanocrystals as supporting catalyst compounds in industrial processes.展开更多
Two aluminum alloys,Al-8Zn and Al-6Bi-8Zn were subjected to equal channel angular pressing(ECAP)up to5passes at room temperature.The microstructural evolution and the grain refinement behavior of these alloys were sys...Two aluminum alloys,Al-8Zn and Al-6Bi-8Zn were subjected to equal channel angular pressing(ECAP)up to5passes at room temperature.The microstructural evolution and the grain refinement behavior of these alloys were systematically studied by electron backscatter diffraction(EBSD).After5passes of ECAP,ultrafine grained microstructures formed in both alloys.However,the grain structure in the Al-6Bi-8Zn alloy is much finer than that of Al-8Zn alloy,showing that the soft Bi particles have a strong influence on enhancing the grain refinement during ECAP.The strengths of the ECAP-processed materials were measured by hardness test and it showed that after5passes of ECAP,the hardness of the Al-6Bi-8Zn alloy was higher than that of the Al-8Zn alloy.The effects of soft Bi particles on the deformation behavior during ECAP and the final strength of the Al-6Bi-8Zn alloy were discussed.展开更多
Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments und...Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that the gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.展开更多
The effect of crystal size of USY zeolite on the performance of hydro-upgrading catalysts for treating catalytically cracked(FCC) LCO(light cycle oil) was studied.Three W-Ni catalysts supported on USY zeolites with di...The effect of crystal size of USY zeolite on the performance of hydro-upgrading catalysts for treating catalytically cracked(FCC) LCO(light cycle oil) was studied.Three W-Ni catalysts supported on USY zeolites with different crystal sizes and Al2O3 were prepared by impregnation method.The catalysts were characterized by XRD and BET methods,and evaluated in a micro-reactor using tetralin as the model compound and in an 100-mL hydrogenation test unit using FCC LCO as the feedstock.By contrast,catalyst made from smaller crystal-size USY zeolite had higher external surface area and shorter pore length,having more hydrogenation activity sites and short contact time of reactant molecules with acidity sites.The evaluation results showed that the catalyst prepared on the basis of small crystal-size USY zeolite had higher tetralin conversion and better hydro-upgrading performance for treating FCC LCO.展开更多
We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and fi...We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.展开更多
We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe ...We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-lmmunoglobulin G/anti-lgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/rnL level, which is among the best of,'eported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.展开更多
Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the futile TiO2 microsp...Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the futile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of futile TiO2 microspheres and anatase TiO, nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of futile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450-800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular futile single crystals phases giving high electron collection efficiency.展开更多
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly repo...Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the Pnnm phase and phase transformation of InS from Pnnm phase to Pm-3m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for fnS with Pnnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and Pm-3m phase are metallic phases.展开更多
基金supported by the National Natural Science Foundation of China(2106700421567008+5 种基金21263005)Project of Jiangxi Province Natural Science Foundation China(20133BAB21003)Training Programs of Innovation and Entrepreneurship for Undergraduates of Jiangxi Province(201310407046)The Landing Project of Science and Technology of Colleges and Universities in Jiangxi Province(KJLD14046)Young Scientist Training Project of Jiangxi Province(20122BCB23015)Yuanhang Engineering of Jiangxi Province~~
文摘Rod-shaped PbW O4 microcrystals of length 1 μm were fabricated by a hydrothermal route and subsequent calcination. Pt nanoparticles(NPs) of different contents(0.5 wt%,1 wt% and 2 wt%) were subsequently deposited on the PbW O4 microcrystals,producing robust Pt/PbW O4 composite microcrystals. The PbW O4 microcrystals and Pt/PbW O4 photocatalysts were characterized by X-ray diffraction,N2 sorption measurements,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron,photoluminescence,Fourier-transform infrared,and ultraviolet-visible diffuse reflectance spectroscopies. The photocatalytic performances of the catalysts were evaluated by the consecutive photocatalytic degradation of acid orange II dye. The Pt/PbW O4 composite microcrystals exhibited high photocatalytic activity and stability. The deposition of Pt NPs produced surface plasmon resonance(SPR),which induced a large visible light absorption. A Pt NP content of 1-2 wt% resulted in an ~2 times increase in photocatalytic activity,compared with the activity of Pt/PbW O4. The crystal structure and high crystallinity of PbW O4 resulted in its favorable photocatalytic property,and the SPR effect of the Pt NPs promoted visible light harvesting. The Pt NPs also enhanced the separation of photo-generated electrons and holes,which further promoted the photocatalytic reaction.
基金Projects(50674067,51074106,51374145)supported by the National Natural Science Foundation of ChinaProject(09JC1408200)supported by the Science and Technology Commission of Shanghai Municipality,China+1 种基金Project(2011BAE22B01-5)supported by the National Key Technology R&D Program of ChinaProjects(182000/S10,192450/I30)supported by the Research Council of Norway
文摘Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC.
基金supported by the National Natural Science Foundation of China(91545111,91634201,21720102001)National Key Research and Development Program of China(2017YFB0702803)Shell Foundation~~
文摘Fast crystallization of nanosized zeolite crystals is a very popular process used for practical zeolite catalyst applications. Herein, we report a designer crystallization process for nanosized zeolite omega crystals based on the relationship between the crystallization time and temperature in the Arrhenius equation. Compared to the conventional hydrothermal synthesis of zeolite omega(72 h at room temperature and 240 h at 100℃, MAZ-100), the crystallization of zeolite omega presented in this work only requires a very short time interval(5 h at 180℃, MAZ-180). Physicochemical characterizations, including XRD, SEM, N2 sorption isotherms, and 27 Al MAS NMR show that the product of zeolite omega(MAZ-180) has good crystallinity and uniform nanocrystals. More importantly, after the loading of Pt nanoparticles(0.5 wt%), the Pt/H-MAZ-180 catalyst exhibits higher isomer selectivity and lower cracking selectivity than those of the Pt/H-MAZ-100 catalyst in the hydroisomerization of n-dodecane. These results suggest the potential applications of these omega nanocrystals as supporting catalyst compounds in industrial processes.
基金Project(10407002)supported by Research Council of NorwayProject(201406080011)supported by China Scholarship Council
文摘Two aluminum alloys,Al-8Zn and Al-6Bi-8Zn were subjected to equal channel angular pressing(ECAP)up to5passes at room temperature.The microstructural evolution and the grain refinement behavior of these alloys were systematically studied by electron backscatter diffraction(EBSD).After5passes of ECAP,ultrafine grained microstructures formed in both alloys.However,the grain structure in the Al-6Bi-8Zn alloy is much finer than that of Al-8Zn alloy,showing that the soft Bi particles have a strong influence on enhancing the grain refinement during ECAP.The strengths of the ECAP-processed materials were measured by hardness test and it showed that after5passes of ECAP,the hardness of the Al-6Bi-8Zn alloy was higher than that of the Al-8Zn alloy.The effects of soft Bi particles on the deformation behavior during ECAP and the final strength of the Al-6Bi-8Zn alloy were discussed.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20473108, No.10672173, and No.10432060) and the "Chuang-xin Project" of the Chinese Academy of Sciences.
文摘Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that the gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.
基金support from the China National Petroleum Corporation (CNPC) (2011B-2304-0305)
文摘The effect of crystal size of USY zeolite on the performance of hydro-upgrading catalysts for treating catalytically cracked(FCC) LCO(light cycle oil) was studied.Three W-Ni catalysts supported on USY zeolites with different crystal sizes and Al2O3 were prepared by impregnation method.The catalysts were characterized by XRD and BET methods,and evaluated in a micro-reactor using tetralin as the model compound and in an 100-mL hydrogenation test unit using FCC LCO as the feedstock.By contrast,catalyst made from smaller crystal-size USY zeolite had higher external surface area and shorter pore length,having more hydrogenation activity sites and short contact time of reactant molecules with acidity sites.The evaluation results showed that the catalyst prepared on the basis of small crystal-size USY zeolite had higher tetralin conversion and better hydro-upgrading performance for treating FCC LCO.
基金supported by Ministry of Science and Technology(Grant No.2012CB921403)the National Natural Science Foundation of China(Grant Nos.11304176 and 11334011)"Strategic Priority Research Program B"of the Chinese Academy of Sciences(Grant No.XDB07030100)
文摘We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.
基金Financial support for this work was provided by the USA National Science Foundation (NSF) (Nos. CMMI- 0900509, CBET-0803142, and ECCS-0708998). Graphene oxide samples were supplied by Prof. Rodney S. Ruoff. The authors thank Dr. Heather A. Owen for technical support with SEM, and Dr. Leonidas E. Ocola for assistance in the electrode fabrication. The e-beam lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory, which is supported by the USA Department of Energy (No. DE- AC02-06CH11357). The SEM imaging was conducted at the Electron Microscope Laboratory of University of Wisconsin-Milwaukee.
文摘We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-lmmunoglobulin G/anti-lgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/rnL level, which is among the best of,'eported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.
文摘Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the futile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of futile TiO2 microspheres and anatase TiO, nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of futile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450-800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular futile single crystals phases giving high electron collection efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11404099,11304140,11147167Funds of Outstanding Youth of Henan Polytechnic University,China under Grant No.J2014–05
文摘Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the Pnnm phase and phase transformation of InS from Pnnm phase to Pm-3m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for fnS with Pnnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and Pm-3m phase are metallic phases.