The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor...The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.展开更多
Zinc nanoplates were grown using thermal evaporation without catalyst or template involved.Tunneling electron microscopy and selected area electron diffraction analyses showed that the plates were single crystals with...Zinc nanoplates were grown using thermal evaporation without catalyst or template involved.Tunneling electron microscopy and selected area electron diffraction analyses showed that the plates were single crystals with either {0001} or {11 20} as basal surfaces.The morphological characteristics were explained in terms of the intrinsic growth anisotropy of zinc,the surface energy of the nano-crystals,the size of the critical nucleus and the migration of the adatoms.Our results suggested a promising low-cost route for synthesis of pure zinc nanoplates which could be used as precursor for further preparing core-shell nanoplate structures.展开更多
基金supported by National Natural Science Foundation of China(Grant No.40830849)National Key Basic Research Program of China(Grant No.2013CB429700)+1 种基金Shandong Province Natural Science Foundation of China for Distin-guished Young Scholars(Grant No.JQ200913)the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences(Grant No.KZCX2-YW-211)
文摘The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.
基金supported by the National Science Foundation of China(Grant Nos. 10875144 and 10979057)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.200800271045)
文摘Zinc nanoplates were grown using thermal evaporation without catalyst or template involved.Tunneling electron microscopy and selected area electron diffraction analyses showed that the plates were single crystals with either {0001} or {11 20} as basal surfaces.The morphological characteristics were explained in terms of the intrinsic growth anisotropy of zinc,the surface energy of the nano-crystals,the size of the critical nucleus and the migration of the adatoms.Our results suggested a promising low-cost route for synthesis of pure zinc nanoplates which could be used as precursor for further preparing core-shell nanoplate structures.