The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as ti...The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as time evolves, the intensity width of grey solitons decreases monotonically to a minimum value toward steady state. In the same propagation time, the FWHM of solitons decreases with p increasing or m decreasing. Moreover, the formation time of solitons is independent of p and m. The time is close to a constant determined by the dielectric relaxation time.展开更多
Glass-forming ability is a long-standing concern in the field of metallic glasses(MGs),which greatly limits their maximum casting size and extensive applications.In this work,we report an ultrasonic-assisted rapid col...Glass-forming ability is a long-standing concern in the field of metallic glasses(MGs),which greatly limits their maximum casting size and extensive applications.In this work,we report an ultrasonic-assisted rapid cold welding of bulk MGs without using any additives.MGs with various compositions are welded together under a 20,000-Hz highfrequency ultrasonic vibration without losing their amorphous nature.The ultrasonic technology offers the advantages of rapid bonding(<1 s)at low temperature(near room temperature)and low stress(<1 MPa).According to the phenomenon observed in the experiment,the activated fresh atoms diffuse through the broken channel port under continuous rupture of the oxide layer,and the ultrasonic vibration accelerates the atomic-diffusion process.Finally,stable bonding of the MG interface is realized.This universal ultrasonic-assisted welding process can realize the composition design of dissimilar MGs as well as tuning of new materials with new performance.展开更多
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
基金Supported by the Science and Technology Development Foundation of Higher Education of Shanxi Province under Grant No.200611042 Basic Research Foundation of Yuncheng University under Grant No.JC-2009003
文摘The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as time evolves, the intensity width of grey solitons decreases monotonically to a minimum value toward steady state. In the same propagation time, the FWHM of solitons decreases with p increasing or m decreasing. Moreover, the formation time of solitons is independent of p and m. The time is close to a constant determined by the dielectric relaxation time.
基金supported by the Key Basic and Applied Research Program of Guangdong Province,China(2019B030302010)the National Natural Science Foundation of China(51871157,51971150 and 51775351)+2 种基金the Science and Technology Innovation Commission Shenzhen(JCYJ20170412111216258)the National Key Research and Development Program of China(2018YFA0703605)Shenzhen Basic Research Project(JCYJ20190808152409578).
文摘Glass-forming ability is a long-standing concern in the field of metallic glasses(MGs),which greatly limits their maximum casting size and extensive applications.In this work,we report an ultrasonic-assisted rapid cold welding of bulk MGs without using any additives.MGs with various compositions are welded together under a 20,000-Hz highfrequency ultrasonic vibration without losing their amorphous nature.The ultrasonic technology offers the advantages of rapid bonding(<1 s)at low temperature(near room temperature)and low stress(<1 MPa).According to the phenomenon observed in the experiment,the activated fresh atoms diffuse through the broken channel port under continuous rupture of the oxide layer,and the ultrasonic vibration accelerates the atomic-diffusion process.Finally,stable bonding of the MG interface is realized.This universal ultrasonic-assisted welding process can realize the composition design of dissimilar MGs as well as tuning of new materials with new performance.