The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
The site order parameter (SOP) has been adopted to analyze various orders of structure formation and distribution during the crystallization of a polyethylene globule simulated by molecular dynamics. The SOP not only ...The site order parameter (SOP) has been adopted to analyze various orders of structure formation and distribution during the crystallization of a polyethylene globule simulated by molecular dynamics. The SOP not only identifies different orders among the structures but also different phases. The results showed that intermediate structures with medium order exist unevenly in the early stage of nucleation, which differs from traditional models. We found that the nucleation relies on crystallinity fluctuations with increasing amplitude, and a baby nucleus with different shape and increasing size suddenly appears in the fluctuations. Once its size is large enough, the baby nucleus becomes the nucleus. In the growth stage, a number of lamellar mergences were observed and their selective behaviors were related to the orientation differences between the lamellae to be merged. The SOP distribution of all atoms in the system during crystallization had two peaks: one for the amorphous phase and the other for the crystalline phase. The intermediate structures with medium orders are located between the two peaks as an order promotion pathway. The data show that the medium order structure fluctuates at the growth front and is not always available, and that the medium order structure existing at the front is not always good for development. It is possibly caused by chain entanglement. Structure fluctuation at the growth front enables the system showing thousands of the most probable configurations to approach the precursor. The growth front is thus active for a while and inactive at other times.展开更多
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
文摘The site order parameter (SOP) has been adopted to analyze various orders of structure formation and distribution during the crystallization of a polyethylene globule simulated by molecular dynamics. The SOP not only identifies different orders among the structures but also different phases. The results showed that intermediate structures with medium order exist unevenly in the early stage of nucleation, which differs from traditional models. We found that the nucleation relies on crystallinity fluctuations with increasing amplitude, and a baby nucleus with different shape and increasing size suddenly appears in the fluctuations. Once its size is large enough, the baby nucleus becomes the nucleus. In the growth stage, a number of lamellar mergences were observed and their selective behaviors were related to the orientation differences between the lamellae to be merged. The SOP distribution of all atoms in the system during crystallization had two peaks: one for the amorphous phase and the other for the crystalline phase. The intermediate structures with medium orders are located between the two peaks as an order promotion pathway. The data show that the medium order structure fluctuates at the growth front and is not always available, and that the medium order structure existing at the front is not always good for development. It is possibly caused by chain entanglement. Structure fluctuation at the growth front enables the system showing thousands of the most probable configurations to approach the precursor. The growth front is thus active for a while and inactive at other times.