A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (200...A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.展开更多
An optimai current lattice model with backward-looking effect is proposed to describe the motion of traffic flow on a single lane highway. The behavior of the new model is investigated anaiytically and numerically. Th...An optimai current lattice model with backward-looking effect is proposed to describe the motion of traffic flow on a single lane highway. The behavior of the new model is investigated anaiytically and numerically. The stability, neutrai stability, and instability conditions of the uniform flow are obtained by the use of linear stability theory. The stability of the uniform flow is strengthened effectively by the introduction of the backward-looking effect. The numerical simulations are carried out to verify the validity of the new model. The outcomes of the simulation are corresponding to the linearly analyticai results. The analytical and numerical results show that the performance of the new model is better than that of the previous models.展开更多
Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave met...Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.展开更多
The relaxation of a one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where a11 magnetic moments ...The relaxation of a one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where a11 magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time T= is determined by Tx = 10β×α3. This relaxation is compared with that of single magnetic nanoparticle system.展开更多
In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. Th...In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. The results indicate that, for antiferromagnetic NNN coupling J2, there may be a critical value J2^c, at which the ground state is dimerized for arbitrary lattice spring constant and beyond and below which the magnetoelastic instability behavior is different from each other. The values of J2^c are irrelevant to the system size. For ferromagnetic NNN coupling, only continuous transition is present from dimerized phase to uniform phase as lattice spring constant is increased.展开更多
基金Supported by the Science Foundations of Laboratory of Computational PhysicalScience Foundation of China Academy of Engineering Physics under Grant Nos. 2009A0102005, 2009B0101012National Natural Science Foundation under Grant Nos. 10775018, 11074300, and 1107521 of China
文摘A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.
基金National Natural Science Foundation of China under Grant No.60674062Middle-Aged and Young Scientists Research Incentive Fund of Shandong Province under Grant No.2007BS01013
文摘An optimai current lattice model with backward-looking effect is proposed to describe the motion of traffic flow on a single lane highway. The behavior of the new model is investigated anaiytically and numerically. The stability, neutrai stability, and instability conditions of the uniform flow are obtained by the use of linear stability theory. The stability of the uniform flow is strengthened effectively by the introduction of the backward-looking effect. The numerical simulations are carried out to verify the validity of the new model. The outcomes of the simulation are corresponding to the linearly analyticai results. The analytical and numerical results show that the performance of the new model is better than that of the previous models.
基金Project(20070533118) supported by the Doctoral Discipline Foundation of Ministry of Education of ChinaProjects(50471058, 50271085) supported by the National Natural Science Foundation of ChinaProject supported by the Postdoctoral Foundation of Central South University, China
文摘Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is △GBCC-HCP>△GFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.
文摘The relaxation of a one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where a11 magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time T= is determined by Tx = 10β×α3. This relaxation is compared with that of single magnetic nanoparticle system.
文摘In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. The results indicate that, for antiferromagnetic NNN coupling J2, there may be a critical value J2^c, at which the ground state is dimerized for arbitrary lattice spring constant and beyond and below which the magnetoelastic instability behavior is different from each other. The values of J2^c are irrelevant to the system size. For ferromagnetic NNN coupling, only continuous transition is present from dimerized phase to uniform phase as lattice spring constant is increased.