AZ91 Mg alloy recycled by a solid state process and equal channel angular pressing(ECAP)exhibited a superior strength. The mechanical properties of AZ91 Mg alloy recycled from machined chips by extrusion at 623 K and ...AZ91 Mg alloy recycled by a solid state process and equal channel angular pressing(ECAP)exhibited a superior strength. The mechanical properties of AZ91 Mg alloy recycled from machined chips by extrusion at 623 K and ECAP at 573 K and 623 K were compared with those of the reference alloy which was produced from an as-received AZ91 Mg alloy block under the same conditions as the recycled alloy.The recycled specimens show a higher strength at room temperature than the reference alloy.The improvement of the tensile properties is attributed not only to the small grain size,but also to the dispersed oxide contaminants.展开更多
A fully automated atomic force microscope(AFM)is presented.The mechanical motion of the AFM stage was controlled by three steppers.The fine motion of the AFM was controlled by an MCL one-axis piezo plate.A32.768kHz cr...A fully automated atomic force microscope(AFM)is presented.The mechanical motion of the AFM stage was controlled by three steppers.The fine motion of the AFM was controlled by an MCL one-axis piezo plate.A32.768kHz crystal tuning fork(TF)was used as the transducer with a probe attached.An acoustic sensor was used to measure the interactions between the probe and the sample.An SR850lock-in amplifier was used to monitor the TF signals.An additional lock-in amplifier was used to monitor the acoustic signal.A field programmable gate array(FPGA)board was used to collect the data in automatic mode.The main controller was coded with LabVIEW,which was in charge of Z-axis scan,signal processing and data visualization.A manual mode and an automatic mode were implemented in the controller.Users can switch the two modes at any time during the operation.This AFM system showed several advantages during the test operations.It is simple,flexible and easy to use.展开更多
Using Technology Computer-Aided Design(TCAD) 3-D simulation,the single event effect(SEE) of 25 nm raised source-drain FinFET is studied.Based on the calibrated 3-D models by process simulation,it is found that the amo...Using Technology Computer-Aided Design(TCAD) 3-D simulation,the single event effect(SEE) of 25 nm raised source-drain FinFET is studied.Based on the calibrated 3-D models by process simulation,it is found that the amount of charge collected increases linearly as the linear energy transfer(LET) increases for both n-type and p-type FinFET hits,but the single event transient(SET) pulse width is not linear with the incidence LET and the increasing rate will gradually reduce as the LET increases.The impacts of wafer thickness on the charge collection are also analyzed,and it is shown that a larger thickness can bring about stronger charge collection.Thus reducing the wafer thickness could mitigate the SET effect for FinFET technology.展开更多
Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used m...Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.展开更多
基金Projects(50201005,50571031)supported by the National Natural Science Foundation of ChinaProject(2009DFA51830)supported by the Ministry of Science and Technology,China
文摘AZ91 Mg alloy recycled by a solid state process and equal channel angular pressing(ECAP)exhibited a superior strength. The mechanical properties of AZ91 Mg alloy recycled from machined chips by extrusion at 623 K and ECAP at 573 K and 623 K were compared with those of the reference alloy which was produced from an as-received AZ91 Mg alloy block under the same conditions as the recycled alloy.The recycled specimens show a higher strength at room temperature than the reference alloy.The improvement of the tensile properties is attributed not only to the small grain size,but also to the dispersed oxide contaminants.
文摘A fully automated atomic force microscope(AFM)is presented.The mechanical motion of the AFM stage was controlled by three steppers.The fine motion of the AFM was controlled by an MCL one-axis piezo plate.A32.768kHz crystal tuning fork(TF)was used as the transducer with a probe attached.An acoustic sensor was used to measure the interactions between the probe and the sample.An SR850lock-in amplifier was used to monitor the TF signals.An additional lock-in amplifier was used to monitor the acoustic signal.A field programmable gate array(FPGA)board was used to collect the data in automatic mode.The main controller was coded with LabVIEW,which was in charge of Z-axis scan,signal processing and data visualization.A manual mode and an automatic mode were implemented in the controller.Users can switch the two modes at any time during the operation.This AFM system showed several advantages during the test operations.It is simple,flexible and easy to use.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60836004,61006070,and 61076025)
文摘Using Technology Computer-Aided Design(TCAD) 3-D simulation,the single event effect(SEE) of 25 nm raised source-drain FinFET is studied.Based on the calibrated 3-D models by process simulation,it is found that the amount of charge collected increases linearly as the linear energy transfer(LET) increases for both n-type and p-type FinFET hits,but the single event transient(SET) pulse width is not linear with the incidence LET and the increasing rate will gradually reduce as the LET increases.The impacts of wafer thickness on the charge collection are also analyzed,and it is shown that a larger thickness can bring about stronger charge collection.Thus reducing the wafer thickness could mitigate the SET effect for FinFET technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.61335010,61275145,61275200&61275145)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2013AA032204)+1 种基金the Brain Vanguard Technology Crossover Cooperation Projects of Chinese Academy of Sciences(GrantNo.KJZD-EW-L11-01)the Recruitment Program for Young Professionals
文摘Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.