Effect of thermal annealing on the upgraded metallurgical grade(UMG)-Si was investigated under different conditions.The dislocation,grain boundaries and preferred growth orientation of Si ingot were characterized by...Effect of thermal annealing on the upgraded metallurgical grade(UMG)-Si was investigated under different conditions.The dislocation,grain boundaries and preferred growth orientation of Si ingot were characterized by optical microscopy,electron back scattering diffraction(EBSD) and X-ray diffractometry(XRD),respectively.The arrange order of dislocation density of Si ingot is from the lowest in the middle to the lower in the bottom and low in the top before and after annealing.And it decreases gradually with increase of the annealing temperature.The number of small angle grain boundaries declines gradually until disappears whereas the proportion of coincidence site lattice(CSL) grain boundaries increases firstly and then decreases.The twin boundary Σ3 reaches the highest proportion of 28% after annealing at 1 200 ℃ for 3 h.Furthermore,the crystal grains in different positions gain the best preferred growth orientation,which can promote the following machining of Si ingot and the conversion efficiency of solar cells.展开更多
Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites wa...Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites was characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The selected area electron diffraction (SAED) for the interface was investigated. The elements at the interface were scanned by energy dispersive spectroscopy (EDS) and the EDS mapping was also obtained. X-ray diffraction (XRD) analysis was carried out for the composites fabricated by 1 pass, 2 passes and 4 passes ECAP-T. According to the XRD analysis, the influences of ECAP-T pass on the Bragg angle and interplanar spacing for AI crystalline planes were studied. The results show that after ECAP-T, the interface between A1 and SiC within the composites is a belt of amorphous SiO2 containing a trace of A1, Si and C which diffused from the matrix and the reinforcement. With the growing ECAP-T pass, the Bragg angle decreases and interplanar spacing increases for A1 crystalline planes, due to the accumulated lattice strain. The increasing lattice strain of A1 grains also boosts the density of the dislocation within A1 grains.展开更多
Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (M...Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary.展开更多
Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a st...Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a static 1/311ˉ20{10ˉ10} screw dislocation was investigated. Twinning dislocation(TD) nucleation and movement play an important role in the interaction. The screw dislocation passes through the moving TB and changes to a basal one with a wide core. In the moving dislocation model, a moving 1/31120{1010} dislocation passes through the TB, converting into a basal one containing two partial dislocations and an extremely short stacking fault. If the TB changes to the {1011} one, the moving1/31120{1010} prismatic screw dislocation can be absorbed by the static TB and dissociated into two TDs on the TB. Along with the stress-strain relationship, results reveal the complicated mechanisms of interactions between the dislocation and TBs.展开更多
The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystalliz...The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z.展开更多
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G...An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.展开更多
In this paper, we review recent progress in the understanding of a novel dislocation mechanism, named correlated necklace dislocations(CNDs), activated in highly oriented nanotwinned(NT) metals under monotonic and cyc...In this paper, we review recent progress in the understanding of a novel dislocation mechanism, named correlated necklace dislocations(CNDs), activated in highly oriented nanotwinned(NT) metals under monotonic and cyclic loading applied parallel to the twin boundaries(TBs). This mechanism was initially revealed to be responsible for the continuous strengthening behavior of NT metals when the TB spacing(λ) is reduced to around 1 nm. It was later found that the presence of a crack-like defect could trigger the operation of CNDs at much larger TB spacings. Most recently, atomistic modeling and experiments demonstrated a history-independent and stable cyclic response of highly oriented NT metals governed by CNDs formed in the NT structure under cyclic loading. CNDs move along the twin planes without directional lattice slip resistance, thus contributing to a symmetric cyclic response of the NT structure regardless of pre-strains imposed on the sample before cyclic loading. We conclude with potential research directions in the investigation of this unique deformation mechanism in highly oriented NT metals.展开更多
基金Project(SKL2009-8)supported by the State Key Laboratory of Silicon Materials,Zhejiang University,ChinaProject(NCET-07-0387)supported by the New Century Excellent Researcher Award Program from Ministry of Education of China
文摘Effect of thermal annealing on the upgraded metallurgical grade(UMG)-Si was investigated under different conditions.The dislocation,grain boundaries and preferred growth orientation of Si ingot were characterized by optical microscopy,electron back scattering diffraction(EBSD) and X-ray diffractometry(XRD),respectively.The arrange order of dislocation density of Si ingot is from the lowest in the middle to the lower in the bottom and low in the top before and after annealing.And it decreases gradually with increase of the annealing temperature.The number of small angle grain boundaries declines gradually until disappears whereas the proportion of coincidence site lattice(CSL) grain boundaries increases firstly and then decreases.The twin boundary Σ3 reaches the highest proportion of 28% after annealing at 1 200 ℃ for 3 h.Furthermore,the crystal grains in different positions gain the best preferred growth orientation,which can promote the following machining of Si ingot and the conversion efficiency of solar cells.
基金Project(51175138) supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011) supported by the Fundamental Research Funds for the Central Universities,China
文摘Powder mixture of pure A1 and oxidized SiC was consolidated into 10% (mass fraction) SiCp/AI composites at 523 K by equal channel angular pressing and torsion (ECAP-T). The interfacial bonding of the composites was characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The selected area electron diffraction (SAED) for the interface was investigated. The elements at the interface were scanned by energy dispersive spectroscopy (EDS) and the EDS mapping was also obtained. X-ray diffraction (XRD) analysis was carried out for the composites fabricated by 1 pass, 2 passes and 4 passes ECAP-T. According to the XRD analysis, the influences of ECAP-T pass on the Bragg angle and interplanar spacing for AI crystalline planes were studied. The results show that after ECAP-T, the interface between A1 and SiC within the composites is a belt of amorphous SiO2 containing a trace of A1, Si and C which diffused from the matrix and the reinforcement. With the growing ECAP-T pass, the Bragg angle decreases and interplanar spacing increases for A1 crystalline planes, due to the accumulated lattice strain. The increasing lattice strain of A1 grains also boosts the density of the dislocation within A1 grains.
基金Project(2012CB932202)supported by the National Basic Research Program of ChinaProjects(50890174,50971088)supported by the National Natural Science Foundation of China
文摘Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary.
基金Projects(11372032,11602015)supported by the National Natural Science Foundation of China
文摘Molecular statics was employed to simulate interaction between screw dislocation and twin boundaries(TB) in hexagonal close-packed zirconium. In the moving TB model, the interaction of a moving {10ˉ12} TB with a static 1/311ˉ20{10ˉ10} screw dislocation was investigated. Twinning dislocation(TD) nucleation and movement play an important role in the interaction. The screw dislocation passes through the moving TB and changes to a basal one with a wide core. In the moving dislocation model, a moving 1/31120{1010} dislocation passes through the TB, converting into a basal one containing two partial dislocations and an extremely short stacking fault. If the TB changes to the {1011} one, the moving1/31120{1010} prismatic screw dislocation can be absorbed by the static TB and dissociated into two TDs on the TB. Along with the stress-strain relationship, results reveal the complicated mechanisms of interactions between the dislocation and TBs.
基金Project(2016YFB0300901)supported by the National Key R&D Program of ChinaProject(TC190H3ZV/2)supported by the National Building Project of Application Demonstration Platform on New Materials Products,ChinaProject(15308469779)supported by Key Laboratory of National Science and Technology for Equipment Pre-research,China。
文摘The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z.
基金financial supports from the National Natural Science Foundation of China(Nos.51161003,51561031)the Natural Science Foundation of Guangxi,China(No.2018GXNSFAA138150)。
文摘An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.
基金Project supported by the National Natural Science Foundation of China(No.11902289)the Hundred Talents Program of Zhejiang University,China。
文摘In this paper, we review recent progress in the understanding of a novel dislocation mechanism, named correlated necklace dislocations(CNDs), activated in highly oriented nanotwinned(NT) metals under monotonic and cyclic loading applied parallel to the twin boundaries(TBs). This mechanism was initially revealed to be responsible for the continuous strengthening behavior of NT metals when the TB spacing(λ) is reduced to around 1 nm. It was later found that the presence of a crack-like defect could trigger the operation of CNDs at much larger TB spacings. Most recently, atomistic modeling and experiments demonstrated a history-independent and stable cyclic response of highly oriented NT metals governed by CNDs formed in the NT structure under cyclic loading. CNDs move along the twin planes without directional lattice slip resistance, thus contributing to a symmetric cyclic response of the NT structure regardless of pre-strains imposed on the sample before cyclic loading. We conclude with potential research directions in the investigation of this unique deformation mechanism in highly oriented NT metals.