High temperature pre-precipitation (HTPP)took place in7005 alloy at various temperatures after solution treatment and itsinfluence on mechanical properties, corrosion behaviors and microstructure of the alloy was in...High temperature pre-precipitation (HTPP)took place in7005 alloy at various temperatures after solution treatment and itsinfluence on mechanical properties, corrosion behaviors and microstructure of the alloy was investigated using tensile test, intergranular corrosion (IGC) test, slow strain rate testing (SSRT), together with microstructural examinations. It is found that Vickers hardness of the aged alloy decreases gradually with decreasing the HTPP temperature, and almost a reverse trend of electrical conductivity is found compared to the hardness changes. Depending on the changes, two HTPP temperaturesof 440 and 420℃ were chosen for comparative study. Results reveal that HTPP alloy tempers exhibit higher resistance to stress corrosion cracking (SCC) and IGC than none pre-precipitate one with an acceptable strength loss due to the substantial enhancement of distribution discontinuity of the coarse grain boundary precipitates (GBPs), and the coarsening and interspacing effect on GBPs becomes more obvious with decreasing the pre-precipitation temperature.展开更多
Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjec...Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.展开更多
The dynamics equation for each individual atom is established directly around the equilibrium state of the system of N atoms based on the inter-atomic potential energy of EAM model.Using the theory of lattice dynamics...The dynamics equation for each individual atom is established directly around the equilibrium state of the system of N atoms based on the inter-atomic potential energy of EAM model.Using the theory of lattice dynamics and periodical boundary condition,the 3N×3N stiffness matrix in eigen equations of vibration frequencies for a parallelepiped crystal is reduced to a 3n×3n matrix of eigen equations of vibration frequencies for a unit lattice.The constitutive relation of the crystal at finite temperature is extracted based on the quantum-mechanical principle.The thermodynamic properties and the stress-strain relationships of crystal Cu with large plastic deformation at different temperatures are calculated,the calculation results agree well with experimental data.展开更多
基金Project(51301209)supported by the National Natural Science Foundation of China
文摘High temperature pre-precipitation (HTPP)took place in7005 alloy at various temperatures after solution treatment and itsinfluence on mechanical properties, corrosion behaviors and microstructure of the alloy was investigated using tensile test, intergranular corrosion (IGC) test, slow strain rate testing (SSRT), together with microstructural examinations. It is found that Vickers hardness of the aged alloy decreases gradually with decreasing the HTPP temperature, and almost a reverse trend of electrical conductivity is found compared to the hardness changes. Depending on the changes, two HTPP temperaturesof 440 and 420℃ were chosen for comparative study. Results reveal that HTPP alloy tempers exhibit higher resistance to stress corrosion cracking (SCC) and IGC than none pre-precipitate one with an acceptable strength loss due to the substantial enhancement of distribution discontinuity of the coarse grain boundary precipitates (GBPs), and the coarsening and interspacing effect on GBPs becomes more obvious with decreasing the pre-precipitation temperature.
基金supported by the Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ11-0Y)the National Basic Research Program of China (Grant No. 2010CB631005)the National Natural Science Foundation of China (Grant Nos. 11172148 and 51071094)
文摘Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.
基金supported by the National Natural Science Foundation of China (Grant Nos.10872197,11021262 and 11172303)
文摘The dynamics equation for each individual atom is established directly around the equilibrium state of the system of N atoms based on the inter-atomic potential energy of EAM model.Using the theory of lattice dynamics and periodical boundary condition,the 3N×3N stiffness matrix in eigen equations of vibration frequencies for a parallelepiped crystal is reduced to a 3n×3n matrix of eigen equations of vibration frequencies for a unit lattice.The constitutive relation of the crystal at finite temperature is extracted based on the quantum-mechanical principle.The thermodynamic properties and the stress-strain relationships of crystal Cu with large plastic deformation at different temperatures are calculated,the calculation results agree well with experimental data.