Ruthenium(Ru)serves as a promising catalyst for ammonia synthesis via the Haber-Bosch process,identification of the structure sensitivity to improve the activity of Ru is important but not fully explored yet.We presen...Ruthenium(Ru)serves as a promising catalyst for ammonia synthesis via the Haber-Bosch process,identification of the structure sensitivity to improve the activity of Ru is important but not fully explored yet.We present here density functional theory calculations combined with microkinetic simulations on nitrogen molecule activation,a crucial step in ammonia synthesis,over a variety of hexagonal close-packed(hcp)and face-center cubic(fcc)Ru facets.Hcp{2130}facet exhibits the highest activity toward N_(2) dissociation in hcp Ru,followed by the(0001)monatomic step sites.The other hcp Ru facets have N_(2) dissociation rates at least three orders lower.Fcc{211}facet shows the best performance for N_(2) activation in fcc Ru,followed by{311},which indicates stepped surfaces make great contributions to the overall reactivity.Although hcp Ru{2130}facet and(0001)monatomic step sites have lower or comparable activation barriers compared with fcc Ru{211}facet,fcc Ru is proposed to be more active than hcp Ru for N_(2) conversion due to the exposure of the more favorable active sites over step surfaces in fcc Ru.This work provides new insights into the crystal structure sensitivity of N_(2) activation for mechanistic understanding and rational design of ammonia synthesis over Ru catalysts.展开更多
基金supported by the National Natural Science Foundation of China(No.91645202 and No.91945302)the Key Technologies R&D Program of China(2017YFB0602205 and 2018YFA0208603)+1 种基金the Chinese Academy of Sciences Key Project(QYZDJSSW-SLH054)the Super Computing Center of USTC is gratefully acknowledged。
文摘Ruthenium(Ru)serves as a promising catalyst for ammonia synthesis via the Haber-Bosch process,identification of the structure sensitivity to improve the activity of Ru is important but not fully explored yet.We present here density functional theory calculations combined with microkinetic simulations on nitrogen molecule activation,a crucial step in ammonia synthesis,over a variety of hexagonal close-packed(hcp)and face-center cubic(fcc)Ru facets.Hcp{2130}facet exhibits the highest activity toward N_(2) dissociation in hcp Ru,followed by the(0001)monatomic step sites.The other hcp Ru facets have N_(2) dissociation rates at least three orders lower.Fcc{211}facet shows the best performance for N_(2) activation in fcc Ru,followed by{311},which indicates stepped surfaces make great contributions to the overall reactivity.Although hcp Ru{2130}facet and(0001)monatomic step sites have lower or comparable activation barriers compared with fcc Ru{211}facet,fcc Ru is proposed to be more active than hcp Ru for N_(2) conversion due to the exposure of the more favorable active sites over step surfaces in fcc Ru.This work provides new insights into the crystal structure sensitivity of N_(2) activation for mechanistic understanding and rational design of ammonia synthesis over Ru catalysts.