Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of...Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.展开更多
基金Project (50801027) supported by the National Natural Science Foundation of ChinaProject(2007001) supported by the Public Foundation of Guangdong Key Laboratory for Advanced Metallic Materials Processing,South China University of Technology,China
文摘Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.