研究了TB8钛合金冷轧板材在不同热处理温度和不同保温时间下的晶粒长大行为。结果表明:TB8钛合金冷轧板材在820~880℃的温度范围内不存在晶粒急剧粗化的现象,可以在此区间内的温度下对其进行热处理,保温时间根据温度的不同可在30~120...研究了TB8钛合金冷轧板材在不同热处理温度和不同保温时间下的晶粒长大行为。结果表明:TB8钛合金冷轧板材在820~880℃的温度范围内不存在晶粒急剧粗化的现象,可以在此区间内的温度下对其进行热处理,保温时间根据温度的不同可在30~120 min范围内选择。此外,借助Beck方程和Arrhenius方程分别计算得到该合金的晶粒生长指数(n)为0.25~0.35,β晶粒长大激活能(Q)为273.23 k J/mol。展开更多
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr...Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.展开更多
文摘研究了TB8钛合金冷轧板材在不同热处理温度和不同保温时间下的晶粒长大行为。结果表明:TB8钛合金冷轧板材在820~880℃的温度范围内不存在晶粒急剧粗化的现象,可以在此区间内的温度下对其进行热处理,保温时间根据温度的不同可在30~120 min范围内选择。此外,借助Beck方程和Arrhenius方程分别计算得到该合金的晶粒生长指数(n)为0.25~0.35,β晶粒长大激活能(Q)为273.23 k J/mol。
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of China Project (CHD2010JC115) supported by the Special Fund for Basic Scientific Research of Central Colleges,China
文摘Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.
基金National Natural Science Foundation of China(u0837601)Yunnan Science Foundation(2011FB126)The Collaboration Program of the colleges and universities(2012020202)