The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of inter...The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of intermetallic compounds(IMCs)and on the resulting properties were investigated.Corrosion and tensile properties were determined on samples solidified under a wide range of T along the length of a directionally solidified Al−6wt.%Cu−5.0wt.%Ni alloy casting.Experimental growth laws were derived relating the evolution of primary(λ_(1))and secondary(λ_(2))dendritic spacings with T and V_(L).The elongation to fracture(δ)and the ultimate tensile strength(σ_(U))were correlated with the inverse of the square root of λ_(1) along the length of the casting by Hall−Petch type experimental equations.The reinforcing effect provided by the addition of Ni in the alloy composition is shown to surpass that provided by the refinement of the dendritic microstructure.The highest corrosion resistance is associated with a microstructure formed by thin IMCs evenly distributed in the interdendritic regions,typical of samples that are solidified under higher T.展开更多
基金CNPq-National Council for Scientific and Technological Development(Grant:407871/2018-7)CAPES-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Brazil,for the financial support。
文摘The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of intermetallic compounds(IMCs)and on the resulting properties were investigated.Corrosion and tensile properties were determined on samples solidified under a wide range of T along the length of a directionally solidified Al−6wt.%Cu−5.0wt.%Ni alloy casting.Experimental growth laws were derived relating the evolution of primary(λ_(1))and secondary(λ_(2))dendritic spacings with T and V_(L).The elongation to fracture(δ)and the ultimate tensile strength(σ_(U))were correlated with the inverse of the square root of λ_(1) along the length of the casting by Hall−Petch type experimental equations.The reinforcing effect provided by the addition of Ni in the alloy composition is shown to surpass that provided by the refinement of the dendritic microstructure.The highest corrosion resistance is associated with a microstructure formed by thin IMCs evenly distributed in the interdendritic regions,typical of samples that are solidified under higher T.