High quality thin films of topological insulators (TI) such as Bi2Se3 have been successfully synthesized by molecular beam epitaxy (MBE). Although the surface of MBE films can be protected by capping with inert ma...High quality thin films of topological insulators (TI) such as Bi2Se3 have been successfully synthesized by molecular beam epitaxy (MBE). Although the surface of MBE films can be protected by capping with inert materials such as amorphous Se, restoring an atomically clean pristine surface after decapping has never been demonstrated, which prevents in-depth investigations of the intrinsic properties of TI thin films with ex situ tools. Using high resolution scanning tunneling microscopy/spectroscopy (STM/STS), we demonstrate a simple and highly reproducible Se decapping method that allows recovery of the pristine surface of extremely high quality Bi2Se3 thin films grown and capped with Se in a separate MBE system then exposed to the atmosphere during transfer into the STM system. The crucial step of our decapping process is the removal of the surface contaminants on top of amorphous Se before thermal desorption of Se at a mild temperature (-210 ~C). This effective Se decapping process opens up the possibility of ex situ characterizations of pristine surfaces of interesting selenide materials and beyond using cutting-edge techniques.展开更多
Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly...Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.展开更多
A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing a...A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing alkali metal silicate fluoride with the[NaO6]polyhedra,the[BaO8 F]polyhedra and isolated[Si2 O7]units.The optical characterizations indicate that NaBa3 Si2 O7 F possesses wide transparent window and available luminescence properties.To confirm the coordination surroundings of anionic groups and its thermostability,infrared spectroscopy and thermal behaviors were also analyzed,which proved the existence of tetrahedronly coordinated silicium atoms and the good stability of NaBa3 Si2 O7 F at high temperature.First-principles calculation was also implemented for better understanding the relationship between the structure of NaBa3 Si207 F and its property.Additionally,to further explore the structural novelty of NaBa3 Si2 O7 F,the comparison of the anionic structures was carried out in mixed alkali and alkaline-earth metal silicate fluorides.Interestingly,the result indicates the isolated[Si2 O7]dimer is rare among the above systems,which enriches the structural chemistry of silicate fluorides.展开更多
TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon cont...TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon contents. The TiA1SiN with 9.0 at.% Silicon has a maximum hardness of 40.9 GPa, a highest adhesion force of 67 N and a lowest friction coefficient of 0.5. Microstructures show that Silicon doping increases the hardness of coating due to solid solution hardening effect and grain boundary enhancement effect. The amorphous Si3N4 matrix, which contains (Ti,Al)N nano-crystals, is formed as the Silicon content is increased. The matrix contributes to the nano-hardness and helps to resist surface oxidization. Especially, the matrix induces low surface roughness and decreases the friction coefficient.展开更多
文摘High quality thin films of topological insulators (TI) such as Bi2Se3 have been successfully synthesized by molecular beam epitaxy (MBE). Although the surface of MBE films can be protected by capping with inert materials such as amorphous Se, restoring an atomically clean pristine surface after decapping has never been demonstrated, which prevents in-depth investigations of the intrinsic properties of TI thin films with ex situ tools. Using high resolution scanning tunneling microscopy/spectroscopy (STM/STS), we demonstrate a simple and highly reproducible Se decapping method that allows recovery of the pristine surface of extremely high quality Bi2Se3 thin films grown and capped with Se in a separate MBE system then exposed to the atmosphere during transfer into the STM system. The crucial step of our decapping process is the removal of the surface contaminants on top of amorphous Se before thermal desorption of Se at a mild temperature (-210 ~C). This effective Se decapping process opens up the possibility of ex situ characterizations of pristine surfaces of interesting selenide materials and beyond using cutting-edge techniques.
基金supported by the National Natural Science Foundation of China(Grant No.40974078)the Physical Sciences Division at University of Chicago
文摘Based on the reported physical parameters for hexagonal system solids,we have calculated the effects of anisotropy on polarization of plane P-wave propagation.Herein we report the results of calculations and the newly observed physical phenomena.It is found that,for a given propagation,if the polarization is parallel to the wave vector,so also to the Poynting vector.In such a case,the phase velocity is identical to the energy velocity;the quasi P-wave degenerates to a pure P-wave along the propagation.It is also noted that if the polarization is parallel to the Poynting vector but not to the wave vector,the propagating wave cannot be a pure P-wave.Furthermore,the polarization in a quasi P-wave may deviate from the wave vector for more than 45°,but the deviation from the Poynting vector is always less than 45°.The energy velocity of a quasi SV-wave can be larger than that of the quasi P-wave in some propagation directions,even though the phase velocity of a quasi SV-wave may never be larger than either the phase velocity or energy velocity of the quasi P-wave.Finally,in case of parameters ε=0 and δ*≠0,the polarization of a quasi P-wave has an observed symmetry at a 45°phase angle.The anisotropy of a hexagonal system solid determines if a pure P-wave can be created and what the propagation direction is for a plane wave propagating inside such a hexagonal system solid.
基金supported by the National Natural Science Foundation of China(U1703132,51872325 and 61835014)Tianshan Innovation Team Program(2018D14001)+5 种基金Xinjiang International Science&Technology Cooperation Program(2017E01014)the National Key Research Project(2016YFB0402104)the Science and Technology Project of Urumqi(P161010002)Xinjiang Key Research and Development Program(2016B02021)Major Program of Xinjiang Uygur Autonomous Region of China during the 13th Five-Year Plan Period(2016A02003)West Light Foundation of the Chinese Academy of Sciences(2016-YJRC-2)
文摘A new silicate fluoride,NaBa3 Si207 F,has been successfully synthesized by a high-temperature solution method.It crystallizes in the orthorhombic space group Cmcm(No.63).NaBa3 Si2 O7 F is the first barium-containing alkali metal silicate fluoride with the[NaO6]polyhedra,the[BaO8 F]polyhedra and isolated[Si2 O7]units.The optical characterizations indicate that NaBa3 Si2 O7 F possesses wide transparent window and available luminescence properties.To confirm the coordination surroundings of anionic groups and its thermostability,infrared spectroscopy and thermal behaviors were also analyzed,which proved the existence of tetrahedronly coordinated silicium atoms and the good stability of NaBa3 Si2 O7 F at high temperature.First-principles calculation was also implemented for better understanding the relationship between the structure of NaBa3 Si207 F and its property.Additionally,to further explore the structural novelty of NaBa3 Si2 O7 F,the comparison of the anionic structures was carried out in mixed alkali and alkaline-earth metal silicate fluorides.Interestingly,the result indicates the isolated[Si2 O7]dimer is rare among the above systems,which enriches the structural chemistry of silicate fluorides.
基金supported by the National Natural Science Foundation of China(Grant No.51105222)the State Key Basic Research Program of China(Grant No.2012CB934101)+1 种基金the Science Fund of the State Key Laboratory of Tribology at Tsinghua University SKLT12A01Beijing Research Program(Grant No.100322002)
文摘TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon contents. The TiA1SiN with 9.0 at.% Silicon has a maximum hardness of 40.9 GPa, a highest adhesion force of 67 N and a lowest friction coefficient of 0.5. Microstructures show that Silicon doping increases the hardness of coating due to solid solution hardening effect and grain boundary enhancement effect. The amorphous Si3N4 matrix, which contains (Ti,Al)N nano-crystals, is formed as the Silicon content is increased. The matrix contributes to the nano-hardness and helps to resist surface oxidization. Especially, the matrix induces low surface roughness and decreases the friction coefficient.