基层单位管理的固定资产数量多且种类繁杂,迫切需要一个技术比较先进,管理比较方便,使用更加智能的资管管理设备及系统。目前资产管理系统基于条形码标签管理居多,使用该方法不仅耗时,而且需要占用资产管理员更多时间。本文试图使用条...基层单位管理的固定资产数量多且种类繁杂,迫切需要一个技术比较先进,管理比较方便,使用更加智能的资管管理设备及系统。目前资产管理系统基于条形码标签管理居多,使用该方法不仅耗时,而且需要占用资产管理员更多时间。本文试图使用条形码和 RFID 标签技术相结合,既有传统条形码成熟稳定易读的特点,也有 RFID 新技术扫描快速高效、体积小、穿透性好等特点,极大提高了资产管理的智能化和自动化,即“智动化”。展开更多
Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining ...Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.展开更多
Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and conta...Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and contact probe can combine the complementary characteristics of different sensors,and has been widely concerned in industry and academia.The number and distribution of measurement points will significantly affect the efficiency of multisensor fusion and the accuracy of surface reconstruction.An aggregation‑value‑based active sampling method for multisensor freeform surface measurement and reconstruction is proposed.Based on game theory iteration,probe measurement points are generated actively,and the importance of each measurement point on freeform surface to multi-sensor fusion is clearly defined as Shapley value of the measurement point.Thus,the problem of obtaining the optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set.Simulation and real measurement results verify that the proposed method can significantly reduce the required probe sample size while ensuring the measurement accuracy of multi-sensor fusion.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. T...Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.展开更多
A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the enti...A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.展开更多
In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general mo...In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.展开更多
This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range o...This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.展开更多
文摘基层单位管理的固定资产数量多且种类繁杂,迫切需要一个技术比较先进,管理比较方便,使用更加智能的资管管理设备及系统。目前资产管理系统基于条形码标签管理居多,使用该方法不仅耗时,而且需要占用资产管理员更多时间。本文试图使用条形码和 RFID 标签技术相结合,既有传统条形码成熟稳定易读的特点,也有 RFID 新技术扫描快速高效、体积小、穿透性好等特点,极大提高了资产管理的智能化和自动化,即“智动化”。
文摘Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.
基金supported by the Na‑tional Key R&D Program of China(No.2022YFB3402600)the National Science Fund for Distinguished Young Scholars(No.51925505)+1 种基金the General Program of National Natural Science Foundation of China(No.52275491)Joint Funds of the National Natural Science Foundation of China(No.U21B2081).
文摘Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and contact probe can combine the complementary characteristics of different sensors,and has been widely concerned in industry and academia.The number and distribution of measurement points will significantly affect the efficiency of multisensor fusion and the accuracy of surface reconstruction.An aggregation‑value‑based active sampling method for multisensor freeform surface measurement and reconstruction is proposed.Based on game theory iteration,probe measurement points are generated actively,and the importance of each measurement point on freeform surface to multi-sensor fusion is clearly defined as Shapley value of the measurement point.Thus,the problem of obtaining the optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set.Simulation and real measurement results verify that the proposed method can significantly reduce the required probe sample size while ensuring the measurement accuracy of multi-sensor fusion.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
文摘Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.
文摘A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.
文摘In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method.
基金Supported by the High Technology Research and Development Programme of China (No.2002AA421160) and the National Natural Science Foundation of China (No.50375008).
文摘This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.