A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
This paper seeks to envision future architectural planning as it relates to living with robots and to clarify the research theme for it. Living with robots is no longer a fantasy seen just on TV or in movies. The conc...This paper seeks to envision future architectural planning as it relates to living with robots and to clarify the research theme for it. Living with robots is no longer a fantasy seen just on TV or in movies. The concept of the intelligent space emerged from the field of robotics in the mid-1990s. The idea of the intelligent space is that the robot will support the architecture and users of the space by keeping in close contact with architectural space equipped with intelligent technologies. The benefit of the intelligent space is that the robot can be smaller and less intelligent because the robot will be assisted by advanced technologies embedded in the architectural space, such as sensors and actuators. Therefore, the robot can consequently assist user's activities with delicate care. This paper describes the vision and possibility for architectural planning as it relates to live with robots who can support the inhabitants' lives. This paper introduces the study of the relationship between humans and moving robot in architectural space, especially support region for humans by desktop mobile robot.展开更多
The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, construct...The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.展开更多
This paper will discuss the computerised developm en t control and approval system being developed for the Planning and Development C ontrol Department, City Hall of Kuala Lumpur, with stress on the GIS architectur e ...This paper will discuss the computerised developm en t control and approval system being developed for the Planning and Development C ontrol Department, City Hall of Kuala Lumpur, with stress on the GIS architectur e developed within the system. The prospects and challenges towards implementati on of the system are also discussed.展开更多
Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question rega...Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.展开更多
Currently, the market offers many visualization tools available to graphic designers, engineers, managers and academics working on maritime environments. The practice of visualization involves making and manipulating ...Currently, the market offers many visualization tools available to graphic designers, engineers, managers and academics working on maritime environments. The practice of visualization involves making and manipulating images that convey novel phenomena and ideas. Visual communication, together with virtual reality environments, is an emerging and rapidly evolving discipline. It brings great advantage over written word or voice alone, as visual sense is by far the most dominant component of human sensory perception. A new smart approach for modeling maritime vessels is described in this paper. Various ways of making modeling relevant for work within the field of maritime management, training and education are discussed.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this syst...Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings or tunnels could affect the acquisition of tragic information and depress the system performance. Aiming at this problem, a novel method employing a back propagation (BP) neural network is developed to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, the speed of its related road sections can be used to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the proposed method of traffic speed estimation is very effective.展开更多
Iranian traditional architecture can be identified in many of its old famous buildings in the country. The principles and specifications in these buildings show the intelligence of implemented techniques that makes th...Iranian traditional architecture can be identified in many of its old famous buildings in the country. The principles and specifications in these buildings show the intelligence of implemented techniques that makes them to remain stable. Thus, it is important to explore the traditional structures and architectural technologies in order to understand the reasons for this stability toward the new methods in modem architecture. Many of historical buildings in Iran have remained standing after many years and they show the deep wisdom of their architects. The purpose of this article is studying the various aspects of traditional structure and integration between this well-oriented structure and architecture. For reaching this goal, we refer to Tekye-Amir-Chakhmagh in Yazd as our case study, which is one of the most important and noticeable examples of Iranian traditional architecture. By introducing Amir-Chakhmagh Complex, we analyzed the specifications and fundamental elements that played an important role in stability and sustainability of Tekye-Amir-Chakhmagh and thereafter, we assessed the technologies that were used intelligently and intricately in this historical building. In this research, information is collected with field study and library resources. Finally, qualities and characteristics of the structure are studied by drawings and structural analysis and as conclusion, the suggestions and guidelines are presented.展开更多
The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing...The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.展开更多
Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and ...Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and intelligent materials, such as sustainable identities in architectural envelopes. Then, contextualized sustainable architectural objectives favor material and energy flows, pointing to the constructive flexibility, identity and compatibility of technological innovation, which contrasts with climate change. So sustainable use of natural resources, renewable energy, in line with the principles of the 2030 Agenda for SDGs (Sustainable Development Goals). The well-being of the community with the valorisation of places and the environment, indicates the technological excellence of architecture, synchronous with territorial metamorphoses. Thus, vision glass principles in the environmentally responsive wall, and engineered wall, in external awareness, cellular flooring for eco-efficiency. The methodologies indicate the applications of new design models for new constructions and regeneration, with dynamic, efficient and integrated envelopes integrated with renewable energy storage technologies, neomaterials and high performance insulating. Then HPP (high performance polymers) nanotechnologies are based on efficient pigments, intelligent bioPCM (PCM for phase change material) nano technologies, thermoregulators with high thermal inertia. The goal is towards an escalation of sustainable architectures that contrasts with climate change and pollution ofanthropic origin, for smart and sustainable growth.展开更多
Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is pr...Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the inner-product kernel spanned by the spline basis functions with infinite number of nodes,this method firstly maps the input data into a high-dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS "kernel" algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input(primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.展开更多
In the process of smart city construction, Beijing, Shanghai, Shenzhen and some other cities are facing many problems, among which the most essential one is the government' s leading role cannot give a better play du...In the process of smart city construction, Beijing, Shanghai, Shenzhen and some other cities are facing many problems, among which the most essential one is the government' s leading role cannot give a better play due to the constraints of the traditional government functions. Therefore, it is necessary to carry out a reasonable position for the government functions in the construction of smart city. This paper issues that the government should reflect functions in the construction of smart city, such as the planning function of top-level design and unified planning; the organizational function of providing funds and talent protection; the coordinating function of promoting multiple-subject cooperation; the controlling function of establishing technical standards and legal norms.展开更多
The purpose of this paper is to pose a new question to speed-up mutual understanding among team members or/and group of experts when communicating over the Internet in forms of virtual collaboration, electronic brains...The purpose of this paper is to pose a new question to speed-up mutual understanding among team members or/and group of experts when communicating over the Internet in forms of virtual collaboration, electronic brainstorming, network strategic conversation, etc. We have previously proposed an approach that the convergent control mechanism based on the fundamental principles of thermodynamic and inverse problem solution method, as well as various artificial intelligence techniques, be incorporated into the communicative process. This paper shows a further development of the approach in terms of applying The Fuzzy Tychonoff Theorem along with quantum techniques provide to reach a high level of holistic discourse which is achieved not only through the application of fundamental principles of compactness of the topological space, but also utilizing quantum entanglement and complementarity principles for discourse structuring in a special way. The approach is implemented as the Responsibility Thinking System (RTS) tested in the course of finding the decisions of the real life issues.展开更多
This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-convent...This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.展开更多
A novel intelligent drug delivery system potential for the more effective therapy of the diabetics was proposed, and the composition of system was analyzed. Based on the design of micro-electro-mechanical systems (MEM...A novel intelligent drug delivery system potential for the more effective therapy of the diabetics was proposed, and the composition of system was analyzed. Based on the design of micro-electro-mechanical systems (MEMS), an iterative modeling process was introduced. Unified modeling language (UML) was em-ployed to describe the function requirement, and different diagrams were built up to explore the static model, the dynamic model and the employment model. The mapping analysis of different diagrams can simply verify the consistency and completeness of the system model.展开更多
With the constructions of "intelligence city", intelligent life quietly came to the people. As the "cell" of the city, the construction of intelligence community arises. Resident service system and e-government ap...With the constructions of "intelligence city", intelligent life quietly came to the people. As the "cell" of the city, the construction of intelligence community arises. Resident service system and e-government application system have been used in the traditional information community, but these systems are independent of each other, lack of interconnectedness, which results in the phenomenon of information isolated island. Intelligence community integrated information service platform can integrate information service resources and provide residents with efficient and convenient life. From the meaning, operation mode, we can design the cooperative, open and extensible system architecture.展开更多
First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relat...First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.展开更多
The evolution of expert and knowledge-based systems in architecture requires the gradual population of building specific databases. Often these databases are slow to evolve due to the time consuming nature of effectiv...The evolution of expert and knowledge-based systems in architecture requires the gradual population of building specific databases. Often these databases are slow to evolve due to the time consuming nature of effectively categorizing building features in a meaningful way that allows for retrieval and reuse. New advances in artificial intelligence such as Hierarchical Temporal Memory (HTM) have the potential to make the construction of these databases more realistic in the near future. Based on an emerging theory of human neurological function, HTMs excel at ambiguous pattern recognition. This paper includes a first experiment using HTMs for learning and recognizing patterns in the form of two distinct American house plan typologies, and further tests the relationship of HTM's recognition tendencies in alternate house plan types. Results from the experiment indicate that HTMs develop a similar storage of quality to humans and are therefore a promising option for capturing multi-modal information in future design automation efforts.展开更多
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
文摘This paper seeks to envision future architectural planning as it relates to living with robots and to clarify the research theme for it. Living with robots is no longer a fantasy seen just on TV or in movies. The concept of the intelligent space emerged from the field of robotics in the mid-1990s. The idea of the intelligent space is that the robot will support the architecture and users of the space by keeping in close contact with architectural space equipped with intelligent technologies. The benefit of the intelligent space is that the robot can be smaller and less intelligent because the robot will be assisted by advanced technologies embedded in the architectural space, such as sensors and actuators. Therefore, the robot can consequently assist user's activities with delicate care. This paper describes the vision and possibility for architectural planning as it relates to live with robots who can support the inhabitants' lives. This paper introduces the study of the relationship between humans and moving robot in architectural space, especially support region for humans by desktop mobile robot.
基金Projects(2014AA052101-3,2014AA052102)supported by the National High Technology Research and Development Program of ChinaProjects(51205389,61105067)supported by the National Natural Science Foundation of China
文摘The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.
文摘This paper will discuss the computerised developm en t control and approval system being developed for the Planning and Development C ontrol Department, City Hall of Kuala Lumpur, with stress on the GIS architectur e developed within the system. The prospects and challenges towards implementati on of the system are also discussed.
文摘Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.
文摘Currently, the market offers many visualization tools available to graphic designers, engineers, managers and academics working on maritime environments. The practice of visualization involves making and manipulating images that convey novel phenomena and ideas. Visual communication, together with virtual reality environments, is an emerging and rapidly evolving discipline. It brings great advantage over written word or voice alone, as visual sense is by far the most dominant component of human sensory perception. A new smart approach for modeling maritime vessels is described in this paper. Various ways of making modeling relevant for work within the field of maritime management, training and education are discussed.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金funded by National Key Technology R&D Program of China (No.2006BAG01A03)
文摘Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings or tunnels could affect the acquisition of tragic information and depress the system performance. Aiming at this problem, a novel method employing a back propagation (BP) neural network is developed to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, the speed of its related road sections can be used to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the proposed method of traffic speed estimation is very effective.
文摘Iranian traditional architecture can be identified in many of its old famous buildings in the country. The principles and specifications in these buildings show the intelligence of implemented techniques that makes them to remain stable. Thus, it is important to explore the traditional structures and architectural technologies in order to understand the reasons for this stability toward the new methods in modem architecture. Many of historical buildings in Iran have remained standing after many years and they show the deep wisdom of their architects. The purpose of this article is studying the various aspects of traditional structure and integration between this well-oriented structure and architecture. For reaching this goal, we refer to Tekye-Amir-Chakhmagh in Yazd as our case study, which is one of the most important and noticeable examples of Iranian traditional architecture. By introducing Amir-Chakhmagh Complex, we analyzed the specifications and fundamental elements that played an important role in stability and sustainability of Tekye-Amir-Chakhmagh and thereafter, we assessed the technologies that were used intelligently and intricately in this historical building. In this research, information is collected with field study and library resources. Finally, qualities and characteristics of the structure are studied by drawings and structural analysis and as conclusion, the suggestions and guidelines are presented.
基金partially supported by a GRF project from RGC of Hong Kong China (City U: 11207714)+2 种基金a SRG grant from City University of Hong Kong China (7004909)a National Basic Research Program of China (2011CB013104)
文摘The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.
文摘Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and intelligent materials, such as sustainable identities in architectural envelopes. Then, contextualized sustainable architectural objectives favor material and energy flows, pointing to the constructive flexibility, identity and compatibility of technological innovation, which contrasts with climate change. So sustainable use of natural resources, renewable energy, in line with the principles of the 2030 Agenda for SDGs (Sustainable Development Goals). The well-being of the community with the valorisation of places and the environment, indicates the technological excellence of architecture, synchronous with territorial metamorphoses. Thus, vision glass principles in the environmentally responsive wall, and engineered wall, in external awareness, cellular flooring for eco-efficiency. The methodologies indicate the applications of new design models for new constructions and regeneration, with dynamic, efficient and integrated envelopes integrated with renewable energy storage technologies, neomaterials and high performance insulating. Then HPP (high performance polymers) nanotechnologies are based on efficient pigments, intelligent bioPCM (PCM for phase change material) nano technologies, thermoregulators with high thermal inertia. The goal is towards an escalation of sustainable architectures that contrasts with climate change and pollution ofanthropic origin, for smart and sustainable growth.
文摘Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the inner-product kernel spanned by the spline basis functions with infinite number of nodes,this method firstly maps the input data into a high-dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS "kernel" algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input(primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.
文摘In the process of smart city construction, Beijing, Shanghai, Shenzhen and some other cities are facing many problems, among which the most essential one is the government' s leading role cannot give a better play due to the constraints of the traditional government functions. Therefore, it is necessary to carry out a reasonable position for the government functions in the construction of smart city. This paper issues that the government should reflect functions in the construction of smart city, such as the planning function of top-level design and unified planning; the organizational function of providing funds and talent protection; the coordinating function of promoting multiple-subject cooperation; the controlling function of establishing technical standards and legal norms.
文摘The purpose of this paper is to pose a new question to speed-up mutual understanding among team members or/and group of experts when communicating over the Internet in forms of virtual collaboration, electronic brainstorming, network strategic conversation, etc. We have previously proposed an approach that the convergent control mechanism based on the fundamental principles of thermodynamic and inverse problem solution method, as well as various artificial intelligence techniques, be incorporated into the communicative process. This paper shows a further development of the approach in terms of applying The Fuzzy Tychonoff Theorem along with quantum techniques provide to reach a high level of holistic discourse which is achieved not only through the application of fundamental principles of compactness of the topological space, but also utilizing quantum entanglement and complementarity principles for discourse structuring in a special way. The approach is implemented as the Responsibility Thinking System (RTS) tested in the course of finding the decisions of the real life issues.
文摘This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.
基金the National Natural Science Founda-tion of China (No. 50575145)
文摘A novel intelligent drug delivery system potential for the more effective therapy of the diabetics was proposed, and the composition of system was analyzed. Based on the design of micro-electro-mechanical systems (MEMS), an iterative modeling process was introduced. Unified modeling language (UML) was em-ployed to describe the function requirement, and different diagrams were built up to explore the static model, the dynamic model and the employment model. The mapping analysis of different diagrams can simply verify the consistency and completeness of the system model.
文摘With the constructions of "intelligence city", intelligent life quietly came to the people. As the "cell" of the city, the construction of intelligence community arises. Resident service system and e-government application system have been used in the traditional information community, but these systems are independent of each other, lack of interconnectedness, which results in the phenomenon of information isolated island. Intelligence community integrated information service platform can integrate information service resources and provide residents with efficient and convenient life. From the meaning, operation mode, we can design the cooperative, open and extensible system architecture.
文摘First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.
文摘The evolution of expert and knowledge-based systems in architecture requires the gradual population of building specific databases. Often these databases are slow to evolve due to the time consuming nature of effectively categorizing building features in a meaningful way that allows for retrieval and reuse. New advances in artificial intelligence such as Hierarchical Temporal Memory (HTM) have the potential to make the construction of these databases more realistic in the near future. Based on an emerging theory of human neurological function, HTMs excel at ambiguous pattern recognition. This paper includes a first experiment using HTMs for learning and recognizing patterns in the form of two distinct American house plan typologies, and further tests the relationship of HTM's recognition tendencies in alternate house plan types. Results from the experiment indicate that HTMs develop a similar storage of quality to humans and are therefore a promising option for capturing multi-modal information in future design automation efforts.