期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于暂态能量的多机电力系统网络评价 被引量:13
1
作者 蔡国伟 穆钢 +1 位作者 柳焯 林子钊 《电力系统自动化》 EI CSCD 北大核心 1999年第16期14-16,共3页
在结构保持模型的基础上,根据网络中暂态能量的变化规律,定义了支路及割集的脆弱性指标。依赖于该指标值的排序,可以有效地识别出影响电力系统暂态稳定性的关键支路及关键割集,确定网络中的薄弱环节,避免了大量的割集搜索计算。对... 在结构保持模型的基础上,根据网络中暂态能量的变化规律,定义了支路及割集的脆弱性指标。依赖于该指标值的排序,可以有效地识别出影响电力系统暂态稳定性的关键支路及关键割集,确定网络中的薄弱环节,避免了大量的割集搜索计算。对6机系统进行仿真,验证了所提方法的有效性。 展开更多
关键词 智态能量 网络评价 稳定性 电力系统
下载PDF
Membrane-inspired quantum bee colony optimization and its applications for decision engine 被引量:3
2
作者 高洪元 李晨琬 《Journal of Central South University》 SCIE EI CAS 2014年第5期1887-1897,共11页
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith... In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions. 展开更多
关键词 quantum bee colony optimization membrane computing P system decision engine cognitive radio benchmarkfunction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部