-
题名面向智慧教育行为分析的图卷积骨架动作识别方法
被引量:3
- 1
-
-
作者
苗启广
辛文天
刘如意
谢琨
王泉
杨宗凯
-
机构
西安电子科技大学计算机科学与技术学院
-
出处
《计算机科学》
CSCD
北大核心
2022年第2期156-161,共6页
-
基金
国家新工科研究与实践项目(E-GCJYZL20200818)
全国高等院校计算机基础教育研究会计算机基础教育教学研究项目(2021-AFCEC-459)
+5 种基金
中国成人教育协会“十四五”成人继续教育科研规划重点课题(2021-414ZA)
陕西高等教育教学改革研究重点攻关/重点项目(21JG001,21BZ014)
广西可信软件重点实验室研究课题(KX202061,KX202041)
西安电子科技大学教育教学改革研究重点攻关项目(A21003)
西安电子科技大学重庆集成电路创新研究院资助产学研项目(CQIRI-CXYHT-2021-06)
新实验开发与新实验设备研制重点项目(SY21022I)。
-
文摘
智慧教育即教育信息化,是利用现代信息技术的新一代教育模式,智慧行为分析是智慧教育系统的核心组成。在面对复杂的教室应用场景时,针对传统的行为识别分类算法的精确性与时效性都存在严重不足的问题,提出了一种基于分离与注意力机制的图卷积(Depthwise Separable Attention Graph Convolutional Network,DSA-GCN)骨架动作识别算法。首先,为解决传统算法在通道域信息聚合天生不充分的难题,通过逐点卷积进行多维通道映射,将时空图卷积对输入骨骼序列的原始时空信息的保护能力与深度可分离卷积在空间和通道特征学习上的分离能力相结合,以增强模型特征学习与抽象表达性。其次,采用多维度融合的注意力机制,在空间卷积域利用自注意力与通道注意力机制来提升模型的动态敏感性,在时间卷积域利用时间与通道注意力融合法来增强对关键帧的判别力。实验结果表明,在NTU RGB+D和N-UCLA两个大型数据集上,DSA-GCN都获得了优异的性能和效能表现,证明了模型对通道域信息聚合能力的提升。
-
关键词
行为识别
智慧行为分析
骨架动作分类
图卷积神经网络
深度可分离卷积
注意力机制
-
Keywords
Action recognition
Smart behavior analysis
Skeleton-based action classification
Graph convolutional neural network
Depth-wise separable convolution
Attention mechanism
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
TP183
[自动化与计算机技术—控制理论与控制工程]
G434
[文化科学—教育技术学]
-