A novel high voltage detector that can be integrated into SPIC (Smart Power IC) is proposed.The structure is designed on the basis of normal junction terminal technique of FFLR (Floating Field Limiting Rings) system....A novel high voltage detector that can be integrated into SPIC (Smart Power IC) is proposed.The structure is designed on the basis of normal junction terminal technique of FFLR (Floating Field Limiting Rings) system.The field limiting ring as a voltage divider,is used to optimize the surface field.The voltage of main junction increases from 0 to a high value,while the utmost ring is designed to vary within a small range,which can be handled by using low voltage logic circuits.An example of 400V rings system is analyzed and simulated for this structure.The results prove that the high voltage detector can detect high voltage in SPIC.The structure can be integrated into SPIC.Besides,it is compatible with CMOS or BCD(Bipolar CMOS Dmos) technology,without any additional processes required.展开更多
The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelli...The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.展开更多
文摘A novel high voltage detector that can be integrated into SPIC (Smart Power IC) is proposed.The structure is designed on the basis of normal junction terminal technique of FFLR (Floating Field Limiting Rings) system.The field limiting ring as a voltage divider,is used to optimize the surface field.The voltage of main junction increases from 0 to a high value,while the utmost ring is designed to vary within a small range,which can be handled by using low voltage logic circuits.An example of 400V rings system is analyzed and simulated for this structure.The results prove that the high voltage detector can detect high voltage in SPIC.The structure can be integrated into SPIC.Besides,it is compatible with CMOS or BCD(Bipolar CMOS Dmos) technology,without any additional processes required.
基金supported by the National Natural Science Foundation of China(Grant No.61370033)National Basic Research Program of China(Grant No.2013CB035502)+4 种基金Foundation of Chinese State Key Laboratory of Robotics and Systems(Grant Nos.SKLRS201401A01,SKLRS-2014-MS-06)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIII.201411)Harbin Talent Programme for Distinguished Young Scholars(No.2014RFYXJ001)Postdoctoral Youth Talent Foundation of Heilongjiang Province,China(Grant No.LBH-TZ0403)the"111 Project"(Grant No.B07018)
文摘The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.