期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于S_Kohonen神经网络的乒乓球运动识别
被引量:
3
1
作者
李斌
靳鹏飞
吴朝晖
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第3期52-56,共5页
针对乒乓球运动识别方法通常无法实时识别、识别率低和识别算法复杂度高,从而导致穿戴式设备续航能力差等问题,提出一种基于遗传算法优化S_Kohonen(supervisedKohonen)神经网络的乒乓球运动实时识别方法,并完成系统设计.该系统通过单MPU...
针对乒乓球运动识别方法通常无法实时识别、识别率低和识别算法复杂度高,从而导致穿戴式设备续航能力差等问题,提出一种基于遗传算法优化S_Kohonen(supervisedKohonen)神经网络的乒乓球运动实时识别方法,并完成系统设计.该系统通过单MPU6050六轴加速度传感器采集运动信号,采用动作端点检测算法提取动作始末端点,基于db4小波对动作信号进行3层分解,同时用遗传算法优化S_Kohonen神经网络对乒乓球常见的6种动作进行识别.实验结果表明:该运动识别方法离线平均识别率为99.17%,实时平均识别率为91.67%,待机功耗为0.28 mW,运行模式功耗为14 mW,识别时间为2 ms,证明该方法识别迅速、功耗低、识别准确率高.
展开更多
关键词
微机电系统传感器
S_Kohonen神经网络
小波分解
智能乒乓球手环
原文传递
题名
基于S_Kohonen神经网络的乒乓球运动识别
被引量:
3
1
作者
李斌
靳鹏飞
吴朝晖
机构
华南理工大学电子与信息学院
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第3期52-56,共5页
基金
国家自然科学基金资助项目(61571196)
广东省科技计划资助项目(2017B090901068,2017B090908004,2018B010142001).
文摘
针对乒乓球运动识别方法通常无法实时识别、识别率低和识别算法复杂度高,从而导致穿戴式设备续航能力差等问题,提出一种基于遗传算法优化S_Kohonen(supervisedKohonen)神经网络的乒乓球运动实时识别方法,并完成系统设计.该系统通过单MPU6050六轴加速度传感器采集运动信号,采用动作端点检测算法提取动作始末端点,基于db4小波对动作信号进行3层分解,同时用遗传算法优化S_Kohonen神经网络对乒乓球常见的6种动作进行识别.实验结果表明:该运动识别方法离线平均识别率为99.17%,实时平均识别率为91.67%,待机功耗为0.28 mW,运行模式功耗为14 mW,识别时间为2 ms,证明该方法识别迅速、功耗低、识别准确率高.
关键词
微机电系统传感器
S_Kohonen神经网络
小波分解
智能乒乓球手环
Keywords
micro-electro-mechanical system sensor
S_Kohonen neural network
wavelet transform
smart ping-pong bracelet
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP212 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于S_Kohonen神经网络的乒乓球运动识别
李斌
靳鹏飞
吴朝晖
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部