城市地理空间、气候环境及交通系统间存在复杂的相互联系、相互制约的关系,交通及地理时空数据为理解三者间关系带来了新的机遇。城市轨道交通是居民绿色出行、缓解中国大城市交通拥堵的重要交通方式。深入研究影响城市地铁客流时间和...城市地理空间、气候环境及交通系统间存在复杂的相互联系、相互制约的关系,交通及地理时空数据为理解三者间关系带来了新的机遇。城市轨道交通是居民绿色出行、缓解中国大城市交通拥堵的重要交通方式。深入研究影响城市地铁客流时间和空间分布变化的因素,有利于制定合理的土地利用及交通需求管理政策,也可为实时响应特定天气条件下旅客出行需求的变化和优化公交服务运营提供理论依据。论文使用智能交通卡数据,以南京市为例,通过建立一种季节性差分自回归移动平均(seasonal autoregressive integrated moving average with explanatory variables, SARIMAX)模型,解释不同种类的天气因素(如降雨、气温、相对湿度、风速等)对地铁客流量时空分布的影响程度。研究发现:降雨类因素在高峰和周末时段对地铁客流量的影响较大;各天气因素对各地铁站点客流量的影响大致呈现出从城市中心区域向外围区域逐渐变小的渐变式规律,且地铁无规律出行者比有规律出行者更易受恶劣天气因素的影响。展开更多
This paper conducts research on the algorithm to improve the location of Wireless Sensor Network (WSN) in Intelligent Transportation System (ITS). The localization algorithm introduced an improved RSSI vehicle loc...This paper conducts research on the algorithm to improve the location of Wireless Sensor Network (WSN) in Intelligent Transportation System (ITS). The localization algorithm introduced an improved RSSI vehicle localization algorithm based on multi-path effect and Gaussian white noise. The localization results under different values of Gaussian white noise and different density of beacon nodes are analyzes, and Kalman filtering algorithm is introduced to reduce the influence of signal noise. Finally, a simulation model of ITS is developed to test the algorithm based on mixed noise and Kalman filtering algorithm, which is used to simulate the localization of real vehicles. The simulation shows the algorithm has effect to improve location accuracy and to application展开更多
文摘城市地理空间、气候环境及交通系统间存在复杂的相互联系、相互制约的关系,交通及地理时空数据为理解三者间关系带来了新的机遇。城市轨道交通是居民绿色出行、缓解中国大城市交通拥堵的重要交通方式。深入研究影响城市地铁客流时间和空间分布变化的因素,有利于制定合理的土地利用及交通需求管理政策,也可为实时响应特定天气条件下旅客出行需求的变化和优化公交服务运营提供理论依据。论文使用智能交通卡数据,以南京市为例,通过建立一种季节性差分自回归移动平均(seasonal autoregressive integrated moving average with explanatory variables, SARIMAX)模型,解释不同种类的天气因素(如降雨、气温、相对湿度、风速等)对地铁客流量时空分布的影响程度。研究发现:降雨类因素在高峰和周末时段对地铁客流量的影响较大;各天气因素对各地铁站点客流量的影响大致呈现出从城市中心区域向外围区域逐渐变小的渐变式规律,且地铁无规律出行者比有规律出行者更易受恶劣天气因素的影响。
文摘This paper conducts research on the algorithm to improve the location of Wireless Sensor Network (WSN) in Intelligent Transportation System (ITS). The localization algorithm introduced an improved RSSI vehicle localization algorithm based on multi-path effect and Gaussian white noise. The localization results under different values of Gaussian white noise and different density of beacon nodes are analyzes, and Kalman filtering algorithm is introduced to reduce the influence of signal noise. Finally, a simulation model of ITS is developed to test the algorithm based on mixed noise and Kalman filtering algorithm, which is used to simulate the localization of real vehicles. The simulation shows the algorithm has effect to improve location accuracy and to application