期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于遗传算法的管理信息系统的智能分解 被引量:1
1
作者 侯小梅 毛宗源 张波 《系统工程与电子技术》 EI CSCD 2000年第1期5-7,共3页
将遗传算法原理应用于管理信息大系统的结构化分解,并对具体分解技术进行了详细描述,最后对一个具体实例进行了仿真计算。仿真说明,该算法具有全局快速收敛性、并行性和极高的分解效率。
关键词 遗传算法 管理信息系统 智能分解
下载PDF
一种制动夹钳智能分解机器人力传感器标定方法研究
2
作者 冯乐乐 《中国新技术新产品》 2022年第16期39-41,共3页
该文结合现有的应用于制动夹钳智能分解机器人力传感器的结构形式,提出了对其自标定的方法,分析了利用机器人技术对传感器进行准确变位,实现一次加载获得多个数值的自标定方式的可行性,用试验方法对传感器进行了自标定,得出了标定矩阵C... 该文结合现有的应用于制动夹钳智能分解机器人力传感器的结构形式,提出了对其自标定的方法,分析了利用机器人技术对传感器进行准确变位,实现一次加载获得多个数值的自标定方式的可行性,用试验方法对传感器进行了自标定,得出了标定矩阵C,并运用MATLAB编程对各试验的标定结果进行了线性拟合,结果显示线性化较好,六维力传感器本体结构设计合理,符合机器人使用要求。 展开更多
关键词 自标定 线性拟合 传感器 制动夹钳智能分解机器人力传感器
下载PDF
P-增广矩阵推理与信息的智能分解挖掘 被引量:2
3
作者 汤积华 陈保会 史开泉 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第12期61-66,共6页
利用内P-增广矩阵推理、外P-增广矩阵推理与P-增广矩阵推理分别给出信息智能内-分解、信息智能外-分解与信息智能内-外分解,给出它们的属性关系、内-分解生成的信息智能分解挖掘、外-分解生成的信息智能分解挖掘与内-外分解生成的信息... 利用内P-增广矩阵推理、外P-增广矩阵推理与P-增广矩阵推理分别给出信息智能内-分解、信息智能外-分解与信息智能内-外分解,给出它们的属性关系、内-分解生成的信息智能分解挖掘、外-分解生成的信息智能分解挖掘与内-外分解生成的信息智能分解挖掘、分解挖掘定理与分解挖掘准则,最后,给出信息智能分解挖掘的应用。 展开更多
关键词 P-集合 P-增广矩阵 P-增广矩阵推理 信息智能分解 智能分解挖掘
原文传递
基于人工神经网络的复杂海工装备项目工作结构分解 被引量:1
4
作者 李敬花 茆学掌 张涛 《计算机集成制造系统》 EI CSCD 北大核心 2017年第7期1511-1519,共9页
为解决复杂海工装备项目工作结构分解困难、分解结果不满足生产要求等问题,采用人工神经网络方法分析项目数据和项目工作结构的关联性,建立项目特征参数与项目工作结构的关联关系,实现项目工作结构的智能化分解。针对海工装备结构和建... 为解决复杂海工装备项目工作结构分解困难、分解结果不满足生产要求等问题,采用人工神经网络方法分析项目数据和项目工作结构的关联性,建立项目特征参数与项目工作结构的关联关系,实现项目工作结构的智能化分解。针对海工装备结构和建造特点,采用有向无环法建立了海工装备项目工作结构分解模型;引入"域"的概念并基于项目数据建立了海工装备项目域;设计了分层模块化人工神经网络结构,并利用项目域数据进行了神经网络训练和测试,得到了稳定的神经网络;通过实例验证了该方法的有效性,解决了目前海工企业项目工作结构分解耗时耗力的问题。 展开更多
关键词 工作分解结构 海工装备项目 人工神经网络 智能分解 项目管理
下载PDF
光纤电流互感器渐变性故障时频特征辨识 被引量:4
5
作者 王立辉 罗拓 +3 位作者 宋亮亮 任旭超 张文鹏 赵凯 《电力工程技术》 北大核心 2022年第5期227-232,共6页
通过时频变换方法分解光纤电流互感器(FOCT)输出信号,获取渐变故障信号特征,是故障分析的关键步骤。针对FOCT渐变性故障信号时域跨度大且劣化过程呈随机性的特点,对输出信号进行跨间隔采样,利用小波包分解算法,根据故障信号频段实现故... 通过时频变换方法分解光纤电流互感器(FOCT)输出信号,获取渐变故障信号特征,是故障分析的关键步骤。针对FOCT渐变性故障信号时域跨度大且劣化过程呈随机性的特点,对输出信号进行跨间隔采样,利用小波包分解算法,根据故障信号频段实现故障信号特征提取,利用相关评价指标对时域特征参数进行筛选,得到表征FOCT劣化趋势的最优特征参数。针对信号特征维度高的特点,提出主元分析法对高维特征降维处理,满足故障特征辨识快速性的需求。实验结果表明:使用6层小波包分解算法,得到64个包含不同频段信号的子序列,对比各个频带能量占比来确定互感器运行状态,能够实现有效辨识渐变性故障特征。 展开更多
关键词 光纤电流互感器(FOCT) 故障诊断 小波包变换 频域特征 时域特征 智能分解算法
下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:3
6
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
下载PDF
Daily and Monthly Suspended Sediment Load Predictions Using Wavelet Based Artificial Intelligence Approaches 被引量:6
7
作者 Vahid NOURANI Gholamreza ANDALIB 《Journal of Mountain Science》 SCIE CSCD 2015年第1期85-100,共16页
In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For... In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction. 展开更多
关键词 Suspended Sediment Load Least SquareSupport Vector Machine (LSSVM) WAVELET ArtificialNeural Network (ANN) Mississippi River
下载PDF
On-line chatter detection using servo motor current signal in turning 被引量:17
8
作者 LIU HongQil CHEN QmgHa +3 位作者 LI Bin MAO XinYong MAO KuanMin PENG FangYu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3119-3129,共11页
Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on f... Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal. 展开更多
关键词 chatter detection current signal empirical mode decomposition (EMD) support vector machine (SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部