In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism a...A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.展开更多
This paper introduces the progress of State Grid Corporation of China (SGCC) in smart grid standardization, including the smart grid standards system, standards reversion and development, the role of standards syste...This paper introduces the progress of State Grid Corporation of China (SGCC) in smart grid standardization, including the smart grid standards system, standards reversion and development, the role of standards system in smart grid demonstration projects, and the situation of SGCC participation in both domestic and international smart grid standardization work.展开更多
Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po...Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.展开更多
Pigeon-inspired optimization(PIO) is a new swarm intelligence optimization algorithm, which is inspired by the behavior of homing pigeons. A variant of pigeon-inspired optimization named multi-objective pigeon-inspire...Pigeon-inspired optimization(PIO) is a new swarm intelligence optimization algorithm, which is inspired by the behavior of homing pigeons. A variant of pigeon-inspired optimization named multi-objective pigeon-inspired optimization(MPIO) is proposed in this paper. It is also adopted to solve the multi-objective optimization problems in designing the parameters of brushless direct current motors, which has two objective variables, five design variables, and five constraint variables. Furthermore, comparative experimental results with the modified non-dominated sorting genetic algorithm are given to show the feasibility, validity and superiority of our proposed MIPO algorithm.展开更多
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金Project(2002CB312203) supported by the National Key Fundamental Research and Development Programof China pro-ject(60574030) supported bythe National Natural Science Foundation of China project(06FD026) supported bythe Natural Science Foun-dation of Hunan Province , China
文摘A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.
文摘This paper introduces the progress of State Grid Corporation of China (SGCC) in smart grid standardization, including the smart grid standards system, standards reversion and development, the role of standards system in smart grid demonstration projects, and the situation of SGCC participation in both domestic and international smart grid standardization work.
基金This work was supported by the National Natural Science Foundation of China (Grant no. 61273317 and 61422209), the National Top Youth Talents Program of China, the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20130203110011) and the Fundamental Research Fund for the Central Universities (Grant no. K5051202053).
文摘Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.61425008,61333004 and 61273054)National Key Basic Research Program of China("973"Project)(Grant Nos.2014CB046401 and 2013CB035503)Top-Notch Young Talents Program of China,Aeronautical Foundation of China(Grant No.20135851042)
文摘Pigeon-inspired optimization(PIO) is a new swarm intelligence optimization algorithm, which is inspired by the behavior of homing pigeons. A variant of pigeon-inspired optimization named multi-objective pigeon-inspired optimization(MPIO) is proposed in this paper. It is also adopted to solve the multi-objective optimization problems in designing the parameters of brushless direct current motors, which has two objective variables, five design variables, and five constraint variables. Furthermore, comparative experimental results with the modified non-dominated sorting genetic algorithm are given to show the feasibility, validity and superiority of our proposed MIPO algorithm.