智能化科研(AI4R)是科研方法的重大变革。提出科技界不仅要关注科学智能(AI for Science,AI4S),更要重视技术智能(AI for Technology,AI4T);不仅要关注大语言模型(LLM),更要重视大科学模型(LSM)。同时提出,人工智能的突破主要不是靠大算...智能化科研(AI4R)是科研方法的重大变革。提出科技界不仅要关注科学智能(AI for Science,AI4S),更要重视技术智能(AI for Technology,AI4T);不仅要关注大语言模型(LLM),更要重视大科学模型(LSM)。同时提出,人工智能的突破主要不是靠大算力,而是计算模型的转变,中国应当争取在基础模型上做出颠覆性的创新;智能化科研适合做复杂问题的组合搜索,神经网络模型也许已接近能处理困难问题的复杂度阈值点;智能化科研的一种趋势是放弃绝对性,拥抱不确定性,一定时期内要适当容忍“黑盒模型”。展开更多
以智能化科研(AI for Science)为核心的第五科研范式已经在多个自然科学和高技术领域得到了广泛应用。与人工智能(AI)在自然科学领域的应用强调发现新原理、新机理和新规律不同,高技术领域更强调用AI技术来发明创造新方案、新工具和新产...以智能化科研(AI for Science)为核心的第五科研范式已经在多个自然科学和高技术领域得到了广泛应用。与人工智能(AI)在自然科学领域的应用强调发现新原理、新机理和新规律不同,高技术领域更强调用AI技术来发明创造新方案、新工具和新产品,以解决特定的领域问题。文章总结了AI在高技术领域的应用——“技术智能”(AI for Technology)的典型特征和科学问题,并以CPU芯片全自动设计为例介绍过往的成功案例。最后,文章指出技术智能的目标不仅是加速创新流程并减少人工投入,同时也希望其具备更强的创造能力,最终超过人类的水平。展开更多
文摘智能化科研(AI4R)是科研方法的重大变革。提出科技界不仅要关注科学智能(AI for Science,AI4S),更要重视技术智能(AI for Technology,AI4T);不仅要关注大语言模型(LLM),更要重视大科学模型(LSM)。同时提出,人工智能的突破主要不是靠大算力,而是计算模型的转变,中国应当争取在基础模型上做出颠覆性的创新;智能化科研适合做复杂问题的组合搜索,神经网络模型也许已接近能处理困难问题的复杂度阈值点;智能化科研的一种趋势是放弃绝对性,拥抱不确定性,一定时期内要适当容忍“黑盒模型”。
文摘以智能化科研(AI for Science)为核心的第五科研范式已经在多个自然科学和高技术领域得到了广泛应用。与人工智能(AI)在自然科学领域的应用强调发现新原理、新机理和新规律不同,高技术领域更强调用AI技术来发明创造新方案、新工具和新产品,以解决特定的领域问题。文章总结了AI在高技术领域的应用——“技术智能”(AI for Technology)的典型特征和科学问题,并以CPU芯片全自动设计为例介绍过往的成功案例。最后,文章指出技术智能的目标不仅是加速创新流程并减少人工投入,同时也希望其具备更强的创造能力,最终超过人类的水平。