期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dr.Deep:基于医疗特征上下文学习的患者健康状态可解释评估 被引量:2
1
作者 马连韬 张超贺 +3 位作者 焦贤锋 王亚沙 唐雯 赵俊峰 《计算机研究与发展》 EI CSCD 北大核心 2021年第12期2645-2659,共15页
深度学习是当前医疗多变量时序数据分析的主流方法.临床辅助决策关乎病人生命健康,因此深度模型需要抽取患者个性化表示,保证较高的分析、预测准确率;同时还需提供足够的可解释性,即能解释模型给出分析、预测结论的依据.而现有工作暂未... 深度学习是当前医疗多变量时序数据分析的主流方法.临床辅助决策关乎病人生命健康,因此深度模型需要抽取患者个性化表示,保证较高的分析、预测准确率;同时还需提供足够的可解释性,即能解释模型给出分析、预测结论的依据.而现有工作暂未能匹配医疗领域多变量时间序列数据的特性来进行个性化表示学习,同时源于深度学习的黑盒性质,现有模型大都可解释性不足,难以满足临床应用的需求.在此背景下,提出了基于医疗特征上下文学习的患者健康状态可解释评估方法Dr.Deep,将各变量的时序特征分别编码,利用多头去协同的自注意力机制,学习不同特征之间关联关系;提出了基于压缩激励机制的特征跳连编码,提升模型对最新病情变化的敏感性并针对不同患者情况分析特征重要性.实验表明:Dr.Deep在重症监护患者脓毒症预测、新冠肺炎重症患者出院时间预测等任务中相比业界方法性能提升,且可以针对不同患者的不同指标自适应学习其重要性作为可解释性的关键因素.同时设计并实现了基于医疗多变量时序数据分析的医生临床辅助系统,该系统建立病人的健康表示学习和预后预测模型并可视化患者病情进展以便医生分析.实验代码已开源于https:github.com Accountable-Machine-Intelligence Dr.Deep.所设计的智能医生可视化交互系统已发布于http:47.93.42.104 challenge 100049. 展开更多
关键词 电子病历数据 临床预后 智能医疗分析 深度学习 可解释性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部