期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能单粒子优化算法 被引量:61
1
作者 纪震 周家锐 +1 位作者 廖惠连 吴青华 《计算机学报》 EI CSCD 北大核心 2010年第3期556-561,共6页
文中在传统粒子群优化(Particle Swarm Optimization,PSO)算法的基础上,提出了智能单粒子优化算法(Intelligent Single Particle Opti mizer,ISPO).与传统的PSO算法不同,该算法采用了一个粒子在解空间中搜索,粒子的位置矢量被分成一定... 文中在传统粒子群优化(Particle Swarm Optimization,PSO)算法的基础上,提出了智能单粒子优化算法(Intelligent Single Particle Opti mizer,ISPO).与传统的PSO算法不同,该算法采用了一个粒子在解空间中搜索,粒子的位置矢量被分成一定数量的子矢量,并基于子矢量对粒子进行更新.在子矢量更新过程中,通过分析之前的速度更新情况,引入一种新的学习策略,使粒子在搜索空间中能够动态地调整速度和位置,从而向全局最优靠近.实验表明,此算法对大部分标准复合测试函数都具有很强的全局搜索能力,其寻优能力超过了国际上最近提出的基于PSO的改进算法. 展开更多
关键词 智能单粒子优化算法 粒子优化 子矢量 学习策略
下载PDF
智能单粒子优化算法在聚类分析中的应用 被引量:3
2
作者 陈永彬 张琢 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期578-584,共7页
针对K-均值聚类算法存在的缺陷,将改进的粒子群优化算法———智能单粒子优化算法(ISPO)应用到聚类分析当中来,提出一种混合聚类算法ISPO+K-means.该算法分为两个阶段:第一阶段利用ISPO算法较强的全局寻优能力形成初始聚类,第二阶段将... 针对K-均值聚类算法存在的缺陷,将改进的粒子群优化算法———智能单粒子优化算法(ISPO)应用到聚类分析当中来,提出一种混合聚类算法ISPO+K-means.该算法分为两个阶段:第一阶段利用ISPO算法较强的全局寻优能力形成初始聚类,第二阶段将初始聚类结果通过K-means算法形成最终聚类结果输出.与K-均值聚类算法和基于传统粒子群K-均值混合算法进行比较,在低维、高维和多样本高维三种特征数据集上实验,结果表明提出的算法能够有效克服其它算法易陷入局部最优的问题,并且验证了算法在对多样本高维数据集处理上具有较明显优势. 展开更多
关键词 聚类分析 智能单粒子优化算法 粒子优化 K-均值算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部