智能反射表面(Intelligent Reflecting Surface,IRS)能够对入射其上的信号进行一定的相位和幅度的变换,从而达到信号的精确传输,提高信号的覆盖和传输效率。但是这种优势都是在已知精确的信道状态信息(Channel State Information,CSI)...智能反射表面(Intelligent Reflecting Surface,IRS)能够对入射其上的信号进行一定的相位和幅度的变换,从而达到信号的精确传输,提高信号的覆盖和传输效率。但是这种优势都是在已知精确的信道状态信息(Channel State Information,CSI)的前提下才能达到。基于IRS元件的无源性,精确的CSI很难得到。针对此问题使用压缩感知(Compressive Sensing,CS)算法结合深度学习(Deep Learning,DL)的方法来解决。使用共链路结构来优化传统的压缩感知算法,能够在更低的导频开销和信噪比(Signal to Noise Ratio,SNR)下获得更好的归一化均方误差(Normalized Mean Square Error,NMSE)。将信道估计问题看作为去噪问题,把优化后的CS算法所得结果看作含有噪声的CSI,使用多重深层降噪块网络对其进一步去噪,得到更加精确的CSI。实验表明,所提算法较对比算法在相同SNR下有更好的精度。展开更多
文摘随着智能反射表面(Reconfigurable Intelligent Surface, RIS)反射单元数量的增加以及定位范围的扩大,数据维度和计算复杂度也逐渐增大。普通的RIS辅助定位算法已经无法满足高维度和高强度计算的需求。随着深度学习等人工智能技术的发展,众多学者关注用深度学习进行定位。深度学习具有学习能力强、覆盖范围广且高度依赖数据量等优点,可以有效解决数据维度大以及计算量大等问题。考虑视距(Line of Sight, LoS)链路和非视距(Non-Line of Sight, NLoS)链路都存在和仅存在NLoS的定位场景下,引入深度学习技术,采用指纹定位的方法采集位置信息,将其输入到基于多头注意力机制(Multi-Head Attention, MHA)的Transformer网络模型中进行训练,实现RIS辅助定位,挖掘信道状态信息(Channel State Information, CSI)与用户位置之间的映射关系,研究三维场景下RIS辅助定位的定位精度。
文摘智能反射表面(Intelligent Reflecting Surface,IRS)能够对入射其上的信号进行一定的相位和幅度的变换,从而达到信号的精确传输,提高信号的覆盖和传输效率。但是这种优势都是在已知精确的信道状态信息(Channel State Information,CSI)的前提下才能达到。基于IRS元件的无源性,精确的CSI很难得到。针对此问题使用压缩感知(Compressive Sensing,CS)算法结合深度学习(Deep Learning,DL)的方法来解决。使用共链路结构来优化传统的压缩感知算法,能够在更低的导频开销和信噪比(Signal to Noise Ratio,SNR)下获得更好的归一化均方误差(Normalized Mean Square Error,NMSE)。将信道估计问题看作为去噪问题,把优化后的CS算法所得结果看作含有噪声的CSI,使用多重深层降噪块网络对其进一步去噪,得到更加精确的CSI。实验表明,所提算法较对比算法在相同SNR下有更好的精度。