针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移...针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。展开更多
文摘针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。