This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of en...This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of engineering design, especially conceptual design are reviewed. A deeper scientific analysis of intelligent design is discussed. A new problem solving strategy and methodologies to implement cooperative design are proposed. Finally, a conceptual model of a blackboard system for accomplishing conceptual design automation is presented. Its fundamental principles, system organization and key implementation techniques are investigated in detail.展开更多
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal...Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.展开更多
The purpose of this paper is to introduce an unknown method for finding a real possible x value of any degree polynomial equation and to show how this can be applied to make computers which are at least x1000 (one th...The purpose of this paper is to introduce an unknown method for finding a real possible x value of any degree polynomial equation and to show how this can be applied to make computers which are at least x1000 (one thousand times) faster than today's existing highest speed computers. Since one of the Milennium Prize Problems offered by Claymath asks about whether P (Deterministic Polynomial) is equal to NP (Non-Deterministic Polynomial) (what that means informally is that whether we can design a computer which can quickly solve a certain complicated problem can also verify the solution quickly (and vice versa). Fortunately, the answer to P vs. NP problem based on my findings in certain algebraic algorythms is yes although there have been many people who claimed the answer is no. What that means is that humans can make machines that work very fast and close to human intelligence in the identification of, say, certain proteins and amino acids, in case my theory is proven to be a fact. This paper is therefore an initial stage of planting the first seeds of the process, in terms of describing how exactly this can happen, theoretically of course, since everything in Science begins with a theory based on the outcome of a hypothesis.展开更多
This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the int...This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last.展开更多
This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at nig...This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at night within a user specified area, to track a light emitting object for a user specified time given the initial position of the object, and to allow the user access to these functions through a graphical user interface. The embedded system is used to provide a communication link between the graphical user interface and system hardware, to provide angle data processing for a dual axis accelerometer, to provide data processing for an electronic compass, and to provide pulse outputs for the step and direction inputs of three stepper motor drives. This paper will describe the design, implementation, and results of each of these objectives.展开更多
Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage...Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design.展开更多
This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine pr...This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to increase the accuracy of dynamical speed, the mathematical model of engagement process based on the law of energy conservation is proposed. Then, a robust cerebellar model articulation controller is proposed for uncertain nonlinear systems. The concept of active disturbance rejection control (ADRC) is adopted so that the proposed controller has more robustness against uncertainties. Finally, the proposed controller is applied to engine speed control system. Both the model of the diesel engine propulsion system and of the control law are validated by a virtual detailed simulation environment. The prediction capability of the model and the control efficiency are clearly shown.展开更多
文摘This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of engineering design, especially conceptual design are reviewed. A deeper scientific analysis of intelligent design is discussed. A new problem solving strategy and methodologies to implement cooperative design are proposed. Finally, a conceptual model of a blackboard system for accomplishing conceptual design automation is presented. Its fundamental principles, system organization and key implementation techniques are investigated in detail.
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074040 6022506) and the Teaching and ResearchAward Program for Outstanding Young Teachers in Higher Edu-cation Institutions of China
文摘Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.
文摘The purpose of this paper is to introduce an unknown method for finding a real possible x value of any degree polynomial equation and to show how this can be applied to make computers which are at least x1000 (one thousand times) faster than today's existing highest speed computers. Since one of the Milennium Prize Problems offered by Claymath asks about whether P (Deterministic Polynomial) is equal to NP (Non-Deterministic Polynomial) (what that means informally is that whether we can design a computer which can quickly solve a certain complicated problem can also verify the solution quickly (and vice versa). Fortunately, the answer to P vs. NP problem based on my findings in certain algebraic algorythms is yes although there have been many people who claimed the answer is no. What that means is that humans can make machines that work very fast and close to human intelligence in the identification of, say, certain proteins and amino acids, in case my theory is proven to be a fact. This paper is therefore an initial stage of planting the first seeds of the process, in terms of describing how exactly this can happen, theoretically of course, since everything in Science begins with a theory based on the outcome of a hypothesis.
文摘This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last.
文摘This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at night within a user specified area, to track a light emitting object for a user specified time given the initial position of the object, and to allow the user access to these functions through a graphical user interface. The embedded system is used to provide a communication link between the graphical user interface and system hardware, to provide angle data processing for a dual axis accelerometer, to provide data processing for an electronic compass, and to provide pulse outputs for the step and direction inputs of three stepper motor drives. This paper will describe the design, implementation, and results of each of these objectives.
基金supported by the National Natural Science Foundation of China (21210003 and 81230076 to H.J., 81773634 to M.Z. and 81430084 to K.C.)the “Personalized Medicines-Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12050201 to M.Z.)+1 种基金National Key Research & Development Plan (2016YFC1201003 to M.Z.)the National Basic Research Program (2015CB910304 to X.L.)
文摘Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design.
基金the National Natural Science Foundation of China(No.51179102)the China Postdoctoral Science Foundation(No.20110490716)
文摘This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to increase the accuracy of dynamical speed, the mathematical model of engagement process based on the law of energy conservation is proposed. Then, a robust cerebellar model articulation controller is proposed for uncertain nonlinear systems. The concept of active disturbance rejection control (ADRC) is adopted so that the proposed controller has more robustness against uncertainties. Finally, the proposed controller is applied to engine speed control system. Both the model of the diesel engine propulsion system and of the control law are validated by a virtual detailed simulation environment. The prediction capability of the model and the control efficiency are clearly shown.