期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的挖掘机工作阶段的分类与识别
1
作者
刘伟嵬
邓剑洋
+1 位作者
张靖文
牛东东
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第10期1464-1473,1489,共11页
为实现对挖掘机作业循环各工作阶段的自动识别,采用以执行机构先导压力、主泵压力和功率为识别对象的智能识别方法.根据执行机构先导压力的变化划分工作阶段,并用主泵压力和功率验证.以各工作阶段起始特征波形作为其起始标志,以时间窗...
为实现对挖掘机作业循环各工作阶段的自动识别,采用以执行机构先导压力、主泵压力和功率为识别对象的智能识别方法.根据执行机构先导压力的变化划分工作阶段,并用主泵压力和功率验证.以各工作阶段起始特征波形作为其起始标志,以时间窗滑移方式提取起始特征并确定最佳时间窗宽度,采用深度学习的方法识别各标志.对比了深度学习中分类识别领域应用广泛的ResNet和LSTM的识别效果,发现LSTM的识别效果更好,对测试集的识别准确率最高可达到99.75%.采用LSTM对测试数据进行识别,识别正确率仅有82.54%,说明存在误识别.提出以挖掘机工作阶段的逻辑顺序和设定主泵功率阈值作为校正依据对误识别进行校正,识别正确率可提升至99.72%.结果表明,该方法识别准确率高,可有效识别作业循环各工作阶段.
展开更多
关键词
液压挖掘机
工作阶段
残差神经网络(ResNet)
长短期记忆(LSTM)神经网络
智能校正系统
下载PDF
职称材料
题名
基于深度学习的挖掘机工作阶段的分类与识别
1
作者
刘伟嵬
邓剑洋
张靖文
牛东东
机构
大连理工大学机械工程学院
大连理工大学高性能精密制造全国重点实验室
徐州徐工挖掘机械有限公司
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第10期1464-1473,1489,共11页
基金
国家重点研发计划项目(2020YFB1709903)
文摘
为实现对挖掘机作业循环各工作阶段的自动识别,采用以执行机构先导压力、主泵压力和功率为识别对象的智能识别方法.根据执行机构先导压力的变化划分工作阶段,并用主泵压力和功率验证.以各工作阶段起始特征波形作为其起始标志,以时间窗滑移方式提取起始特征并确定最佳时间窗宽度,采用深度学习的方法识别各标志.对比了深度学习中分类识别领域应用广泛的ResNet和LSTM的识别效果,发现LSTM的识别效果更好,对测试集的识别准确率最高可达到99.75%.采用LSTM对测试数据进行识别,识别正确率仅有82.54%,说明存在误识别.提出以挖掘机工作阶段的逻辑顺序和设定主泵功率阈值作为校正依据对误识别进行校正,识别正确率可提升至99.72%.结果表明,该方法识别准确率高,可有效识别作业循环各工作阶段.
关键词
液压挖掘机
工作阶段
残差神经网络(ResNet)
长短期记忆(LSTM)神经网络
智能校正系统
Keywords
objective
interval particle
interval hydraulic excavator
working stage
residual neural network(ResNet)
long short-term memory(LSTM)neural network
intelligent correction system
分类号
TU621 [建筑科学—建筑技术科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的挖掘机工作阶段的分类与识别
刘伟嵬
邓剑洋
张靖文
牛东东
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部