期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5模型的施工现场智能检测研究与应用
1
作者 张乾坤 成启彬 +2 位作者 丁宏亮 金枫凌 邹佳霖 《建筑施工》 2024年第11期1821-1824,共4页
在工程项目现场,施工安全是至关重要的环节。针对安全风险难以把控、人员情况及环境情况检测难以统计等问题,使用YOLOv5算法,对图像数据集进行迭代训练,得到施工现场人员和环境的智能检测模型。检测模型的检测精度为93.616%,在训练集和... 在工程项目现场,施工安全是至关重要的环节。针对安全风险难以把控、人员情况及环境情况检测难以统计等问题,使用YOLOv5算法,对图像数据集进行迭代训练,得到施工现场人员和环境的智能检测模型。检测模型的检测精度为93.616%,在训练集和验证集上的检测损失分别为0.018787和0.023108,并且在未经标注的测试集图像中取得了很好的检测效果。基于检测模型,开发形成建筑工地安全施工检测软件、建筑工地危险区域入侵检测软件,并深度应用于浙江建工绿智钢结构有限公司钢构件加工基地的第二车间、第三车间。通过监控视频对工程项目现场的施工要素进行全方位检测,为工程技术与管理人员提供了一种切实可行的智慧工地智能检测方案。 展开更多
关键词 施工安全 YOLOv5算法 图像数据集 Y迭代训练 智能检测模型 集成平台
下载PDF
具有互助能力的智能入侵检测模型 被引量:2
2
作者 包征宇 须文波 《计算机工程与应用》 CSCD 北大核心 2003年第10期171-173,共3页
论文介绍了入侵检测系统中所采用的异常检测技术及其优缺点,并且介绍了解决此缺点的一些模型,分析了此类模型,提出了一种新的思想:建立一个检测系统的通讯标准,以使不同的系统能够互相通讯,成为一张检测系统的网络,加强防止入侵。
关键词 互助能力 智能入侵检测模型 网络安全 计算机网络 DDOS 代理 人工智能 人工神经网络
下载PDF
基于阻尼装置的智能滑坡防卫系统设计
3
作者 李沛霖 《四川水泥》 2019年第5期82-82,共1页
现有的技术中,一般是采用格构加固或修筑防护墙的方式对边坡表面进行加固。然而,若边坡面积过大且坡度十分陡峭,则会大大增加加固维修的成本,此外由于滑坡的砂石在下滑过程中具有一定的惯性,会给防护强造成极大的冲击导致其损坏而失去... 现有的技术中,一般是采用格构加固或修筑防护墙的方式对边坡表面进行加固。然而,若边坡面积过大且坡度十分陡峭,则会大大增加加固维修的成本,此外由于滑坡的砂石在下滑过程中具有一定的惯性,会给防护强造成极大的冲击导致其损坏而失去防护的目的。针对以上问题,本文提出了一套基于阻尼装置的智能滑坡防卫系统设计原理,建立多因素作用下滑坡微检测智能分析模型,结合阻尼力-推块竖向高度的换算理论,解决普通支挡物在滑坡砂石冲击作用下造成损坏失去防护功能的问题。 展开更多
关键词 阻尼装置 滑坡 检测智能分析模型
下载PDF
Smartphone Malware Detection Model Based on Artificial Immune System 被引量:1
4
作者 WU Bin LU Tianliang +2 位作者 ZHENG Kangfeng ZHANG Dongmei LIN Xing 《China Communications》 SCIE CSCD 2014年第A01期86-92,共7页
In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artif... In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware. Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated. Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation. 展开更多
关键词 artificial immune system smartphonemalware DETECTION negative selection clonalselection
下载PDF
Malware Detection in Smartphones Using Static Detection and Evaluation Model Based on Analytic Hierarchy Process 被引量:1
5
作者 Zhang Miao Yang Youxiu +2 位作者 Cheng Gong Dong Hang Li Chengze 《China Communications》 SCIE CSCD 2012年第12期144-152,共9页
Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine ... Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine consisting of six parts: decompile, grammar parsing, control flow and data flow analysis, safety analysis, and comprehensive evaluation. In the comprehensive evaluation, we obtain a weight vector of 29 evaluation indexes using the analytic hierarchy process. During this process, the detection engine exports a list of suspicious API. On the basis of this list, the evaluation part of the engine performs a compre- hensive evaluation of the hazard assessment of software sample. Finally, hazard classification is given for the software. The false positive rate of our approach for detecting rnalware samples is 4. 7% and normal samples is 7.6%. The experimental results show that the accuracy rate of our approach is almost similar to the method based on virus signatures. Compared with the method based on virus signatures, our approach performs well in detecting unknown malware. This approach is promising for the application of malware detection. 展开更多
关键词 SMARTPHONE MALWARE analytic hierarchy process static detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部