期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于组件技术的励调器智能检测软件设计
1
作者 徐祖龙 傅勤毅 王宁 《微型电脑应用》 2003年第8期22-24,共3页
利用组件技术设计了电传动内燃机车励磁调节器智能检测软件 ,用软件界面替代传统仪表面板 ,并通过内嵌的专家系统对励调器运行工况和故障状态进行判别。系统具有标准化、模块化和开放性特点 ,方便功能扩展和更新。
关键词 软件设计 微机型励磁调节器 智能检测软件 组件 专家系统
下载PDF
Windows平台恶意软件智能检测综述 被引量:15
2
作者 汪嘉来 张超 +1 位作者 戚旭衍 荣易 《计算机研究与发展》 EI CSCD 北大核心 2021年第5期977-994,共18页
近年来,恶意软件给信息技术的发展带来了很多负面的影响.为了解决这一问题,如何有效检测恶意软件则一直备受关注.随着人工智能的迅速发展,机器学习与深度学习技术逐渐被引入到恶意软件的检测中,这类技术称之为恶意软件智能检测技术.相... 近年来,恶意软件给信息技术的发展带来了很多负面的影响.为了解决这一问题,如何有效检测恶意软件则一直备受关注.随着人工智能的迅速发展,机器学习与深度学习技术逐渐被引入到恶意软件的检测中,这类技术称之为恶意软件智能检测技术.相比于传统的检测方法,由于人工智能技术的应用,智能检测技术不需要人工制定检测规则.此外,具有更强的泛化能力,能够更好地检测先前未见过的恶意软件.恶意软件智能检测已经成为当前检测领域的研究热点.主要介绍了当前的恶意软件智能检测相关工作,包含了智能检测所需的主要环节.从智能检测中常用的特征、如何进行特征处理、智能检测中常用的分类器、当前恶意软件智能检测所面临的主要问题4个方面对智能检测相关工作进行了系统地阐述与分类.最后,总结了先前智能检测相关工作,阐明了未来潜在的研究方向,旨在能够助力恶意软件智能检测的发展. 展开更多
关键词 恶意软件 恶意软件智能检测 人工智能 机器学习 深度学习
下载PDF
Smartphone Malware Detection Model Based on Artificial Immune System 被引量:1
3
作者 WU Bin LU Tianliang +2 位作者 ZHENG Kangfeng ZHANG Dongmei LIN Xing 《China Communications》 SCIE CSCD 2014年第A01期86-92,共7页
In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artif... In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware. Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated. Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation. 展开更多
关键词 artificial immune system smartphonemalware DETECTION negative selection clonalselection
下载PDF
Malware Detection in Smartphones Using Static Detection and Evaluation Model Based on Analytic Hierarchy Process 被引量:1
4
作者 Zhang Miao Yang Youxiu +2 位作者 Cheng Gong Dong Hang Li Chengze 《China Communications》 SCIE CSCD 2012年第12期144-152,共9页
Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine ... Mobile malware is rapidly increasing and its detection has become a critical issue. In this study, we summarize the common characteristics of this inalicious software on Android platform. We design a detection engine consisting of six parts: decompile, grammar parsing, control flow and data flow analysis, safety analysis, and comprehensive evaluation. In the comprehensive evaluation, we obtain a weight vector of 29 evaluation indexes using the analytic hierarchy process. During this process, the detection engine exports a list of suspicious API. On the basis of this list, the evaluation part of the engine performs a compre- hensive evaluation of the hazard assessment of software sample. Finally, hazard classification is given for the software. The false positive rate of our approach for detecting rnalware samples is 4. 7% and normal samples is 7.6%. The experimental results show that the accuracy rate of our approach is almost similar to the method based on virus signatures. Compared with the method based on virus signatures, our approach performs well in detecting unknown malware. This approach is promising for the application of malware detection. 展开更多
关键词 SMARTPHONE MALWARE analytic hierarchy process static detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部