The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent ve...The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent vehicle test platform has no uniform standard, which leads to different granularity of driving map information, The sensor information processing module is directly associated with the driving map information and decision-making module, which leads to the interface of intelligent driving system software module has no uniform standard, Based on the software and hardware architecture of intelligent vehicle, the sensor information and driving map information are processed by using the formal language of driving cognition to form a driving situation graph cluster and output to a decision-making module, and the out- put result of the decision-making module is shown as a cognitive arrow cluster, so that the whole process of intelligent driving from perception to decision-making is completed, The formalization of driving cognition reduces the influence of sensor type, model, quantity, and location on the whole software architec- ture, which makes the software architecture portable on different intelligent driving hardware platforms.展开更多
This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adapt...This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adaptive and designed to positively contribute in low voltage microgrids in which the lines R/X ratio is greater than the transmission lines. Therefore, the proposed control strategy is developed for operation in distribution lines. The controller strategy is different from the conventional grid-connected inverters which are designed based on transmission line characteristics. This controller, using a Texas Instrument general purpose DSP (digital signal processor), is programmed and tuned using MATLAB/SIMULINK in order to enhance self-healing, reliability and stability of the grid. This general purpose controller makes proper decisions using its local measurements as the primary source of data. The controller has the capability of communicating with the adjacent controllers and sharing the information if/when needed. The power flow output of the inverter is tested for both islanded and grid-connected modes of operation. The inverter positively contributes to active and reactive power supply while operating in grid-connected mode. The proposed control method has been implemented on a Texas Instrument DSC (digital signal controller) chip and tested on a hardware test bench at the Alternative Energy Laboratory at WVU1T (West Virginia University Institute of Technology). The system's experimental results veri~ the validity and efficiency of the proposed controller.展开更多
基金This work was supported by China Postdoctoral Science Foundation Special Funded Projects (2018T110095), project funded by China Postdoctoral Science Foundation (2017M620765), National Key Research and Development Program of China (2017YFB0102603), and Junior Fellowships for Advanced Innovation Think-tank Program of China Association for Science and Technology (DXB -ZKQN -2017-035 ).
文摘The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent vehicle test platform has no uniform standard, which leads to different granularity of driving map information, The sensor information processing module is directly associated with the driving map information and decision-making module, which leads to the interface of intelligent driving system software module has no uniform standard, Based on the software and hardware architecture of intelligent vehicle, the sensor information and driving map information are processed by using the formal language of driving cognition to form a driving situation graph cluster and output to a decision-making module, and the out- put result of the decision-making module is shown as a cognitive arrow cluster, so that the whole process of intelligent driving from perception to decision-making is completed, The formalization of driving cognition reduces the influence of sensor type, model, quantity, and location on the whole software architec- ture, which makes the software architecture portable on different intelligent driving hardware platforms.
文摘This paper presents a real-time power flow controller for VSIs (voltage source inverters) interfaced to low voltage microgrids. The proposed controller is modular, flexible, intelligent, inexpensive, portable, adaptive and designed to positively contribute in low voltage microgrids in which the lines R/X ratio is greater than the transmission lines. Therefore, the proposed control strategy is developed for operation in distribution lines. The controller strategy is different from the conventional grid-connected inverters which are designed based on transmission line characteristics. This controller, using a Texas Instrument general purpose DSP (digital signal processor), is programmed and tuned using MATLAB/SIMULINK in order to enhance self-healing, reliability and stability of the grid. This general purpose controller makes proper decisions using its local measurements as the primary source of data. The controller has the capability of communicating with the adjacent controllers and sharing the information if/when needed. The power flow output of the inverter is tested for both islanded and grid-connected modes of operation. The inverter positively contributes to active and reactive power supply while operating in grid-connected mode. The proposed control method has been implemented on a Texas Instrument DSC (digital signal controller) chip and tested on a hardware test bench at the Alternative Energy Laboratory at WVU1T (West Virginia University Institute of Technology). The system's experimental results veri~ the validity and efficiency of the proposed controller.