Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to aut...Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.展开更多
In paper it introduced a review of modem traction vehicle drive system with induction motor drive system (PMSM with single or dual rotor drive system) or BLDC motor with different configuration of magnetic circuits....In paper it introduced a review of modem traction vehicle drive system with induction motor drive system (PMSM with single or dual rotor drive system) or BLDC motor with different configuration of magnetic circuits. For particular part of drive system proposed a quasi intelligent control system version smart control enables multi criteria predictive control of vehicle work. In the paper presented also a selected diagnostic procedure, enables monitoring exploitation parameters, and prediction of probable failure state. For different vehicle work state realized a simulation models and crash test of exploitations failure models.展开更多
This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at nig...This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at night within a user specified area, to track a light emitting object for a user specified time given the initial position of the object, and to allow the user access to these functions through a graphical user interface. The embedded system is used to provide a communication link between the graphical user interface and system hardware, to provide angle data processing for a dual axis accelerometer, to provide data processing for an electronic compass, and to provide pulse outputs for the step and direction inputs of three stepper motor drives. This paper will describe the design, implementation, and results of each of these objectives.展开更多
基金Project(K5117827)supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(08KJB510021)supported by the Natural Science Research Council of Jiangsu Province,China+1 种基金Project(Q3117918)supported by Scientific Research Foundation for Young Teachers of Soochow University,ChinaProject(60910001)supported by National Natural Science Foundation of China
文摘Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.
文摘In paper it introduced a review of modem traction vehicle drive system with induction motor drive system (PMSM with single or dual rotor drive system) or BLDC motor with different configuration of magnetic circuits. For particular part of drive system proposed a quasi intelligent control system version smart control enables multi criteria predictive control of vehicle work. In the paper presented also a selected diagnostic procedure, enables monitoring exploitation parameters, and prediction of probable failure state. For different vehicle work state realized a simulation models and crash test of exploitations failure models.
文摘This paper presents the design and implementation of the embedded microcontrollers within a telescope control system. The design objectives of the overall system are to automatically find light emitting objects at night within a user specified area, to track a light emitting object for a user specified time given the initial position of the object, and to allow the user access to these functions through a graphical user interface. The embedded system is used to provide a communication link between the graphical user interface and system hardware, to provide angle data processing for a dual axis accelerometer, to provide data processing for an electronic compass, and to provide pulse outputs for the step and direction inputs of three stepper motor drives. This paper will describe the design, implementation, and results of each of these objectives.