The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network as...The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network assets. As higher penetration of distributed generators is envisioned among distribution networks, the network operators will have an challenging task in the future to maintain the reliability and quality of supply. The distribution networks are going to be challenged simultaneously by increasing penetration of distributed generators and by increasing loading (inter alia heat pumps, air conditioners or electric vehicles), which will change the operational perspective of the future distribution networks. Presented simulation results show that the increasing penetration of those appliances can jeopardize the functionality of current protection scheme in distribution networks. Therefore, an additional scheme for assessment of network overloading applicable at low voltage distribution networks is proposed and the application of this scheme, supported by smart metering infrastructure, is demonstrated in a case study. The proposed overloading assessment scheme should help the network operators to increase the flexibility of distribution networks, their hosting capacity, safety and reliability.展开更多
This paper presents a practical method for calculating a power user’s customer interruption costs(CIC)under specific conditions.This novel method has been developed,based on the CIC results predicted by Lawrence Berk...This paper presents a practical method for calculating a power user’s customer interruption costs(CIC)under specific conditions.This novel method has been developed,based on the CIC results predicted by Lawrence Berkeley National Laboratory(LBNL),so that the key factors,such as customer type,customer size,interruption occurrence time and interruption duration can be considered.As compared to the LBNL method,the method proposed here is easy to understand and easy to execute with an acceptable error.It lays a solid foundation for further investigation of distributed generators and demand response in assessing reliability value of smart distribution grid(SDG).The effectiveness of the proposed method is confirmed through the assessment of RBTS-Bus2.展开更多
文摘The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network assets. As higher penetration of distributed generators is envisioned among distribution networks, the network operators will have an challenging task in the future to maintain the reliability and quality of supply. The distribution networks are going to be challenged simultaneously by increasing penetration of distributed generators and by increasing loading (inter alia heat pumps, air conditioners or electric vehicles), which will change the operational perspective of the future distribution networks. Presented simulation results show that the increasing penetration of those appliances can jeopardize the functionality of current protection scheme in distribution networks. Therefore, an additional scheme for assessment of network overloading applicable at low voltage distribution networks is proposed and the application of this scheme, supported by smart metering infrastructure, is demonstrated in a case study. The proposed overloading assessment scheme should help the network operators to increase the flexibility of distribution networks, their hosting capacity, safety and reliability.
文摘This paper presents a practical method for calculating a power user’s customer interruption costs(CIC)under specific conditions.This novel method has been developed,based on the CIC results predicted by Lawrence Berkeley National Laboratory(LBNL),so that the key factors,such as customer type,customer size,interruption occurrence time and interruption duration can be considered.As compared to the LBNL method,the method proposed here is easy to understand and easy to execute with an acceptable error.It lays a solid foundation for further investigation of distributed generators and demand response in assessing reliability value of smart distribution grid(SDG).The effectiveness of the proposed method is confirmed through the assessment of RBTS-Bus2.