期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于脉冲神经网络的智能控制研究进展
1
作者 刘晓德 郭宇飞 +1 位作者 黄旭辉 马喆 《控制理论与应用》 EI CAS 2024年第12期2189-2206,共18页
近些年,具备低功耗、高鲁棒、融合时空信息等优势的脉冲神经网络(SNN)在类脑研究与智能控制的交叉领域方兴未艾.基于脉冲神经网络架构的智能控制方法是实现与环境自主交互并且高能效完成复杂控制任务的有效途径之一.为此,本文首先介绍了... 近些年,具备低功耗、高鲁棒、融合时空信息等优势的脉冲神经网络(SNN)在类脑研究与智能控制的交叉领域方兴未艾.基于脉冲神经网络架构的智能控制方法是实现与环境自主交互并且高能效完成复杂控制任务的有效途径之一.为此,本文首先介绍了SNN的基本要素与研究动机;然后,详细介绍了近年来基于脉冲神经网络智能控制的研究进展以及在机器人、无人车、无人机等领域的应用情况;接着,总结了一些现有的硬件平台,用以实现SNN算法的高效能实现;最后,总结展望了SNN控制发展的机遇与挑战.本文旨在梳理出SNN控制发展的技术脉络,为其快速发展提供借鉴与思路. 展开更多
关键词 脉冲神经网络 深度学习 神经网络智能控制 神经形态计算
下载PDF
基于智能方法的倒立摆系统研究
2
作者 李俊芳 张振东 史晓霞 《燕山大学学报》 CAS 2001年第z1期56-60,共5页
对利用智能方法来实现对倒立摆系统的研究进行了综述,并详细论述了几种主要的倒立摆系统的控制方法,最后介绍了目前控制倒立摆的最成功的控制方案中云模型的概念,并对未来的研究方向进行了探讨.
关键词 倒立摆 非线性系统 智能控制 神经网络 云模型 神经逆模型.
下载PDF
Ultra-precision positioning control technique based on neural network 被引量:4
3
作者 张金龙 余玲玲 刘京南 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期130-133,共4页
Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method reli... Due to the non-linearity behavior of the precision positioning system, an accurate mathematical control model is difficult to set up, a novel control method for ultra-precision alignment is presented. This method relies on neural network and alignment marks that are in the form of 100μm pitch gratings. The 0-th order Moire signals' intensity and its intensity rate are chosen as input variables of the neural network. The characteristics of the neural network make it possible to perform self-training and self-adjusting so as to achieve automatic precision alignment. A neural network model for precision positioning is set up. The model is composed of three neural layers, i.e. input layer, hidden layer and output layer. Driving signal is obtained by mapping Moire signals' intensity and its intensity rate. The experimental results show that neural network control for precision positioning can effectively improve positioning speed with high accuracy. It has the advantages of fast, stable response and good robustness. The device based on neural network can achieve the positioning accuracy of ± 0. 5μm. 展开更多
关键词 Moire signals ultra-precision alignment neural network intelligent control
下载PDF
风力发电机组空载并网智能控制方法研究 被引量:1
4
作者 葛苁 边辉 孙屹岱 《自动化与仪器仪表》 2020年第4期78-81,共4页
考虑到部分空载并网时达到稳定状态较慢、拟合精度较低的问题,提出了一种风力发电机组空载并网智能控制方法。设计智能控制,控制对象输出量与期望输出量相同;通过最近邻聚类算法获得初始的智能控制规则,再利用神经网络进行规则优化;综... 考虑到部分空载并网时达到稳定状态较慢、拟合精度较低的问题,提出了一种风力发电机组空载并网智能控制方法。设计智能控制,控制对象输出量与期望输出量相同;通过最近邻聚类算法获得初始的智能控制规则,再利用神经网络进行规则优化;综合智能控制与控制策略,实现风力发电机组空载并网智能控制。实验结果显示:风机发电组空载并网智能控制方法较常规控制方法早2 s达到稳定状态;智能控制方法的拟合误差平方和低于常规控制方法,表明智能控制方法对样本的拟合精度较高,在控制风力发电机组空载并网时的效果越好。 展开更多
关键词 风力发电机组 空载并网 智能神经网络控制
原文传递
Control strategy for an intelligent shearer height adjusting system 被引量:8
5
作者 FAN Qigao, LI Wei, WANG Yuqiao, ZHOU Lijuan, YANG Xuefeng, YE Guo School of Mechanical & Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China 《Mining Science and Technology》 EI CAS 2010年第6期908-912,共5页
An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting ... An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system. 展开更多
关键词 SHEARER height adjusting system dynamic fuzzy neural network
下载PDF
Applications of artificial intelligence technology to wastewater treatment fields in China
6
作者 卿晓霞 《Journal of Chongqing University》 CAS 2005年第4期213-217,共5页
Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of ... Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed. 展开更多
关键词 wastewater treatment artificial intelligence Artificial Neuron Network intelligent control fuzzy control
下载PDF
A Direct Feedback Control Based on Fuzzy Recurrent Neural Network
7
作者 李明 马小平 《Journal of China University of Mining and Technology》 2002年第2期215-218,共4页
A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algor... A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances . 展开更多
关键词 fuzzy neural network genetic algorithm neural network control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部