期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
浅谈建筑工程可视化智能算量软件 被引量:1
1
作者 范文昭 张军朝 《太原城市职业技术学院学报》 2009年第5期139-141,共3页
建筑工程可视化智能算量软件是山西建筑职业技术学院、太原理工大学、山西太原天地方圆电子科技有限公司联合自选课题、自主研发的项目。软件采用VisualC++为开发工具,以AUTOCAD2000以上版本为应用平台,实现科学、规范、高效、准确的建... 建筑工程可视化智能算量软件是山西建筑职业技术学院、太原理工大学、山西太原天地方圆电子科技有限公司联合自选课题、自主研发的项目。软件采用VisualC++为开发工具,以AUTOCAD2000以上版本为应用平台,实现科学、规范、高效、准确的建筑工程量自动计算,减少招投标工作中造价人员工作量,提高工作效率。本文对建筑工程可视化智能算量软件的研究背景、技术架构、与国内同类软件的对比分析、主要成果及创新点进行了比较详尽的介绍。 展开更多
关键词 建筑工程 可视化智能算量软件 三维 标准图集
下载PDF
基于GIM模型的架空输电线路智能算量研究 被引量:1
2
作者 魏惠敏 《科学技术创新》 2020年第31期86-87,共2页
为进一步提升架空输电线路工程造价过程中算量环节的效率和准确性,为造价评审提供数据和软件支撑,打破数据收集壁垒,探索基于三维设计模型(GIM)进行智能算量的方法,并依据算量结果对GIM可算性进行分析,提出三维设计模型的改进方向。
关键词 三维设计模型 GIM 输电线路 智能算量业务构件
下载PDF
架空输电线路三维智能算量分析 被引量:1
3
作者 谢枫 阮勇 +2 位作者 刘耀中 周贺 王锦涛 《智能建筑与智慧城市》 2022年第8期66-68,共3页
文章将围绕基于GIM模型的颗粒度进行分析讨论,阐述技经信息需求,提出智能算量与交互模式的基本内容,从而帮助电力企业充分运用三维设计构造、技经造价、数据平台,达到提高工程量计算效率的目的,利用数据参数与造价规则的相互匹配,确保... 文章将围绕基于GIM模型的颗粒度进行分析讨论,阐述技经信息需求,提出智能算量与交互模式的基本内容,从而帮助电力企业充分运用三维设计构造、技经造价、数据平台,达到提高工程量计算效率的目的,利用数据参数与造价规则的相互匹配,确保与造价有关的物料信息能够自动生成,促进输变电工程的一体化发展。 展开更多
关键词 输电线路 智能算量 GIM模型
下载PDF
基于BIM的智能化算量——以输变电土建工程为例 被引量:4
4
作者 刘籍蔚 《建材与装饰》 2019年第31期240-241,共2页
本文主要针对国内电力行业BIM技术的应用情况进行重点分析。具体从实现电力工程自动化计量现状与问题入手,结合BIM与BSL算量软件,提出一种全新的电力基础设施项目工程量自动化计量的方案和措施。旨在通过实现BIM的智能化算量,为电力建... 本文主要针对国内电力行业BIM技术的应用情况进行重点分析。具体从实现电力工程自动化计量现状与问题入手,结合BIM与BSL算量软件,提出一种全新的电力基础设施项目工程量自动化计量的方案和措施。旨在通过实现BIM的智能化算量,为电力建设工程提供良好内在驱动力。本文主要以输变电土建工程为研究对象,重点阐明基于BIM智能化算量的输变电土建工程实践应用情况,给相关工程人员提供一定的借鉴价值。 展开更多
关键词 BIM 智能 输变电土建工程 应用
下载PDF
BIM技术在输变电工程智能化算量中的应用 被引量:4
5
作者 刘璇 《集成电路应用》 2021年第1期122-123,共2页
基于实现电力工程自动化计量现状与问题,阐述BIM以及BSL算量软件应用的有效结合,拟定应用价值较高的电力基础设施项目工程量自动化计量措施与实践方案。
关键词 BIM技术 输变电工程 智能
下载PDF
Research on Flexible Flow⁃Shop Scheduling Problem with Lot Streaming in IOT⁃Based Manufacturing Environment 被引量:2
6
作者 DAI Min WANG Lixing +2 位作者 GU Wenbin ZHANG Yuwei DORJOY M M H 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期831-838,共8页
It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet o... It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach. 展开更多
关键词 IOT-based manufacturing flexible flow-shop scheduling intelligent algorithm lot-streaming strategy
下载PDF
A Quantized Kernel Least Mean Square Scheme with Entropy-Guided Learning for Intelligent Data Analysis 被引量:5
7
作者 Xiong Luo Jing Deng +3 位作者 Ji Liu Weiping Wang Xiaojuan Ban Jenq-Haur Wang 《China Communications》 SCIE CSCD 2017年第7期127-136,共10页
Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for inp... Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme. 展开更多
关键词 quantized kernel least mean square (QKLMS) consecutive square entropy data analysis
下载PDF
Intelligent Traffic Allocation Algorithm for Multiple Networks
8
作者 Gao Peng Meng Dexiang +2 位作者 Wang Shoufeng Zhang Dongchen Cheng Nan 《China Communications》 SCIE CSCD 2012年第12期127-136,共10页
In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity,... In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators. 展开更多
关键词 traffic allocation strategy making network optimization
下载PDF
A multi-objective optimization framework for ill-posed inverse problems
9
作者 Maoguo Gong Hao Li Xiangming Jiang 《CAAI Transactions on Intelligence Technology》 2016年第3期225-240,共16页
Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po... Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective. 展开更多
关键词 Ill-posed problem Image processing Multi-objective optimization Evolutionary algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部