The use of digitally activated, variable transmittance materials and artificial intelligence methods to building control will enhance the performance of buildings, and programmable components will change the tradition...The use of digitally activated, variable transmittance materials and artificial intelligence methods to building control will enhance the performance of buildings, and programmable components will change the traditional modes of architectural design, manufacturing and construction. In the presented key study, the architectural form and functionality of windows are revisited with a view to integrate current advances in material science, control systems engineering and human-computer interaction. The features of a building facade, involving a matrix of programmable windows that enables precise control of daylight, view and privacy in the interior of a house are discussed. Managing the variable transmittance materials of the facade by an autonomous high-level control system allows the optimization of the house performance based on real time data and the schedule of the inhabitants. Using constraint violations as a measure of success, the autonomous control of the house outperforms any existing deterministic control models.展开更多
Understanding the holistic relationship between refinery production scheduling(RPS) and the cyber-physical production environment with smart scheduling is a new question posed in the study of process systems engineeri...Understanding the holistic relationship between refinery production scheduling(RPS) and the cyber-physical production environment with smart scheduling is a new question posed in the study of process systems engineering. Here, we discuss state-of-the-art RSPs in the crude-oil refining field and present examples that illustrate how smart scheduling can impact operations in the high-performing chemical process industry. We conclude that, more than any traditional off-the-shelf RPS solution available today, flexible and integrative specialized modeling platforms will be increasingly necessary to perform decentralized and collaborative optimizations,since they are the technological alternatives closer to the advanced manufacturing philosophy.展开更多
文摘The use of digitally activated, variable transmittance materials and artificial intelligence methods to building control will enhance the performance of buildings, and programmable components will change the traditional modes of architectural design, manufacturing and construction. In the presented key study, the architectural form and functionality of windows are revisited with a view to integrate current advances in material science, control systems engineering and human-computer interaction. The features of a building facade, involving a matrix of programmable windows that enables precise control of daylight, view and privacy in the interior of a house are discussed. Managing the variable transmittance materials of the facade by an autonomous high-level control system allows the optimization of the house performance based on real time data and the schedule of the inhabitants. Using constraint violations as a measure of success, the autonomous control of the house outperforms any existing deterministic control models.
文摘Understanding the holistic relationship between refinery production scheduling(RPS) and the cyber-physical production environment with smart scheduling is a new question posed in the study of process systems engineering. Here, we discuss state-of-the-art RSPs in the crude-oil refining field and present examples that illustrate how smart scheduling can impact operations in the high-performing chemical process industry. We conclude that, more than any traditional off-the-shelf RPS solution available today, flexible and integrative specialized modeling platforms will be increasingly necessary to perform decentralized and collaborative optimizations,since they are the technological alternatives closer to the advanced manufacturing philosophy.