In this paper, it briefly introduces the main characteristics, the means how to realize the func-tions, the network protocal, operating interface of the newly intelligent network dimmer cubicle.
This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artifi...This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.展开更多
An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicat...An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advantages than the conventional method. They show that the ANN modeling and learning control method is an effective approach to real time control of welding dynamics and ideal quality.展开更多
The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbani...The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.展开更多
The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can redu...The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can reduce their integration costs, which should allow more resources to be applied toward increased functionality for managing and optimizing the electrical system. As a part of smart grid, the SPG (smart power grid) was built on Jeju Island. The SPG consists of IDAS (intelligent distribution automation system), substation automation system, intelligent transmission system, and active telemetrics system. To integrate these systems which have different operating systems and platforms CIM standard was used. But IDAS has many functions and advanced algorithms not defined in CIM. In this paper, the authors introduce how to develop and extend the CIM model for managing the IDAS.展开更多
With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbul...With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.展开更多
文摘In this paper, it briefly introduces the main characteristics, the means how to realize the func-tions, the network protocal, operating interface of the newly intelligent network dimmer cubicle.
文摘This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.
文摘An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advantages than the conventional method. They show that the ANN modeling and learning control method is an effective approach to real time control of welding dynamics and ideal quality.
文摘The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.
文摘The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can reduce their integration costs, which should allow more resources to be applied toward increased functionality for managing and optimizing the electrical system. As a part of smart grid, the SPG (smart power grid) was built on Jeju Island. The SPG consists of IDAS (intelligent distribution automation system), substation automation system, intelligent transmission system, and active telemetrics system. To integrate these systems which have different operating systems and platforms CIM standard was used. But IDAS has many functions and advanced algorithms not defined in CIM. In this paper, the authors introduce how to develop and extend the CIM model for managing the IDAS.
基金supported by the National Natural Science Foundation of China(Grant Nos.92152301,and 91852115)the National Numerical Wind tunnel Project(Grand No.NNW2018-ZT1B01).
文摘With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.