Foraging behavior in ant colonies has come to be viewed as a prototypical example to describe how complex group behavior can arise from simple individuals. In order to research the feature of self-organization in swar...Foraging behavior in ant colonies has come to be viewed as a prototypical example to describe how complex group behavior can arise from simple individuals. In order to research the feature of self-organization in swarm intelligence (SI), a mean field model is given and analyzed in foraging process with three sources in this paper. The distance of trails and the richness of each source are considered. Both of the theoretical numerical analysis and Monte Carlo simulation show the power law relationship between the completion time and the flux of foragers. The work presented here guides a better understanding on self-organization and swarm intelligence. It can be used to design more efficient, adaptive, and reliable intelligent systems.展开更多
This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the...This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.展开更多
基金Sponsored by the National High Technology Research and Development Program 863(Grant No.2009AA04Z215)the National Natural Science Foundation of China(Grant No.60975071)the Fund for Basic Research from Harbin Engineering University(Grant No.002060260750)
文摘Foraging behavior in ant colonies has come to be viewed as a prototypical example to describe how complex group behavior can arise from simple individuals. In order to research the feature of self-organization in swarm intelligence (SI), a mean field model is given and analyzed in foraging process with three sources in this paper. The distance of trails and the richness of each source are considered. Both of the theoretical numerical analysis and Monte Carlo simulation show the power law relationship between the completion time and the flux of foragers. The work presented here guides a better understanding on self-organization and swarm intelligence. It can be used to design more efficient, adaptive, and reliable intelligent systems.
基金Project supported by the National Natural Science Foundation ofChina (No. 60421002) and the Outstanding Young Research Inves-tigator Fund (No. 60225006), China
文摘This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.