离子液体是一类可调控、多功能的绿色环保材料,具有良好的电磁场响应,有望应用于调控水驱油路径.在分析离子液体在毛细管中电磁场响应机理的基础上,建立了电磁场-渗流场耦合作用下离子液体多孔介质流动模型.通过理论推导与数值分析发现...离子液体是一类可调控、多功能的绿色环保材料,具有良好的电磁场响应,有望应用于调控水驱油路径.在分析离子液体在毛细管中电磁场响应机理的基础上,建立了电磁场-渗流场耦合作用下离子液体多孔介质流动模型.通过理论推导与数值分析发现:电磁场-渗流场耦合作用下毛细管流量大小主要由离子液体电导率与黏度的比值(内因)、电磁场强度与压力梯度(外因)两方面决定;电磁场产生的洛伦兹力对离子液体施加一个电磁驱动压强,形成一个类似压力梯度的电磁驱动等效压力梯度,从而改变离子液体的流量,当电磁场强度为2.0×104 V/m·T时,电磁场在电导率为0.5 S/m的离子液体上可形成10 k Pa/m电磁驱动等效压力梯度.通过调整电磁场方向即可控制离子液体在多孔介质中的流动方向,解决常规注水利用压力差难以控制流动路径的难题,为离子液体智能驱油提供理论依据,且电磁场产生的热效应会影响离子液体的流动能力及潜在驱油效率.展开更多
文摘离子液体是一类可调控、多功能的绿色环保材料,具有良好的电磁场响应,有望应用于调控水驱油路径.在分析离子液体在毛细管中电磁场响应机理的基础上,建立了电磁场-渗流场耦合作用下离子液体多孔介质流动模型.通过理论推导与数值分析发现:电磁场-渗流场耦合作用下毛细管流量大小主要由离子液体电导率与黏度的比值(内因)、电磁场强度与压力梯度(外因)两方面决定;电磁场产生的洛伦兹力对离子液体施加一个电磁驱动压强,形成一个类似压力梯度的电磁驱动等效压力梯度,从而改变离子液体的流量,当电磁场强度为2.0×104 V/m·T时,电磁场在电导率为0.5 S/m的离子液体上可形成10 k Pa/m电磁驱动等效压力梯度.通过调整电磁场方向即可控制离子液体在多孔介质中的流动方向,解决常规注水利用压力差难以控制流动路径的难题,为离子液体智能驱油提供理论依据,且电磁场产生的热效应会影响离子液体的流动能力及潜在驱油效率.