An intelligent line-tracking robot using the enhanced microprocessor STM32F103RBT6 as its core controller is introduced in this paper. The hardware configuration and line-tracking control principle of the system are d...An intelligent line-tracking robot using the enhanced microprocessor STM32F103RBT6 as its core controller is introduced in this paper. The hardware configuration and line-tracking control principle of the system are described, and the black-white marked program design of the sensor is analyzed. Two motors are respectively driven by two H-bridge driving circuits, which are formed by four discrete components of metal oxide semiconductor (MOS) field effect transistor respectively. By altering values of voltage directions and pulse width modulation (PWM), the walking direction and the speed of robot are adjusted, and the traditional PID control theory is adopted to adjust the robot during walking process. The results indicate that the design is scientific and reasonable, low cost, good adaptability and high applicability.展开更多
文摘An intelligent line-tracking robot using the enhanced microprocessor STM32F103RBT6 as its core controller is introduced in this paper. The hardware configuration and line-tracking control principle of the system are described, and the black-white marked program design of the sensor is analyzed. Two motors are respectively driven by two H-bridge driving circuits, which are formed by four discrete components of metal oxide semiconductor (MOS) field effect transistor respectively. By altering values of voltage directions and pulse width modulation (PWM), the walking direction and the speed of robot are adjusted, and the traditional PID control theory is adopted to adjust the robot during walking process. The results indicate that the design is scientific and reasonable, low cost, good adaptability and high applicability.