±800 k V特高压直流输电技术是实现全球能源联网及大范围资源优化配置的核心技术之一,针对特高压直流输电的电磁暂态仿真研究是保证工程成功的必要环节。基于ADPSS仿真装置中电磁暂态仿真程序ETSDAC建立换流器、换流变压器、交直...±800 k V特高压直流输电技术是实现全球能源联网及大范围资源优化配置的核心技术之一,针对特高压直流输电的电磁暂态仿真研究是保证工程成功的必要环节。基于ADPSS仿真装置中电磁暂态仿真程序ETSDAC建立换流器、换流变压器、交直流滤波器、直流输电线路等仿真模型,并在此仿真平台上对某实际系统在两种故障情况下进行单极全压仿真模拟,与PSCAD电磁暂态仿真计算模型进行比较分析。结果显示:两个程序的计算结果基本一致,所建模型可较准确地模拟特高压直流输电系统动态特性。ETSDAC可以作为研究特高压直流输电系统的有效工具。展开更多
In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. ...In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.展开更多
文摘±800 k V特高压直流输电技术是实现全球能源联网及大范围资源优化配置的核心技术之一,针对特高压直流输电的电磁暂态仿真研究是保证工程成功的必要环节。基于ADPSS仿真装置中电磁暂态仿真程序ETSDAC建立换流器、换流变压器、交直流滤波器、直流输电线路等仿真模型,并在此仿真平台上对某实际系统在两种故障情况下进行单极全压仿真模拟,与PSCAD电磁暂态仿真计算模型进行比较分析。结果显示:两个程序的计算结果基本一致,所建模型可较准确地模拟特高压直流输电系统动态特性。ETSDAC可以作为研究特高压直流输电系统的有效工具。
文摘In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.