This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solut...This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solution method of TSA,the step-size control strategy is used according to the local truncation error theory firstly.Then,computation of the generation units,which is the most time-consuming part of the simulation,is dynamically dispatched to several cores using an α dynamic scheduling scheme to obtain workload balancing based on OpenMP.Due to the convergence of Newton-type iterations,an adaptive Jacobian update control strategy is applied to reduce the sequential part of the simulation and the overhead generated by OpenMP.Several large scale test cases verify the validity and practicability of the proposed parallel algorithm,showing that the proposed approach achieves high speed-up and a considerable reduction in parallel overheads.展开更多
With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes t...With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes two kinds of common used current limiters based on the increment of bus impedance matrix and proposes a multi-objective current limiters configuration model considering the investment of limiters,the level of short-circuit current,as well as the transient stability of power system.An innovative search space reduction technique based on sensitivity factor is introduced to choose better candidate locations for current limiters so as to avoid the curse of dimensionality.The elitist non-dominated sorting genetic algorithm II is used to search the Pareto-optimal solutions of the proposed model.In order to further improve optimization efficiency,master-slave parallel modification of NSGA-II program structure is implemented.The satisfactory case study results demonstrate the feasibility of the proposed multi-objective method in power system current limiters allocation associated with cost,security and stability.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 2012CB215106)the National Basic Research Program of China ("973" Program) (Grant No. 50977082)
文摘This paper provides an OpenMP-based parallel Very Dishonest Newton(VDHN) algorithm with variable step size,running transient stability simulations(TSA) on multi-core computers.Under the framework of simultaneous solution method of TSA,the step-size control strategy is used according to the local truncation error theory firstly.Then,computation of the generation units,which is the most time-consuming part of the simulation,is dynamically dispatched to several cores using an α dynamic scheduling scheme to obtain workload balancing based on OpenMP.Due to the convergence of Newton-type iterations,an adaptive Jacobian update control strategy is applied to reduce the sequential part of the simulation and the overhead generated by OpenMP.Several large scale test cases verify the validity and practicability of the proposed parallel algorithm,showing that the proposed approach achieves high speed-up and a considerable reduction in parallel overheads.
文摘With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes two kinds of common used current limiters based on the increment of bus impedance matrix and proposes a multi-objective current limiters configuration model considering the investment of limiters,the level of short-circuit current,as well as the transient stability of power system.An innovative search space reduction technique based on sensitivity factor is introduced to choose better candidate locations for current limiters so as to avoid the curse of dimensionality.The elitist non-dominated sorting genetic algorithm II is used to search the Pareto-optimal solutions of the proposed model.In order to further improve optimization efficiency,master-slave parallel modification of NSGA-II program structure is implemented.The satisfactory case study results demonstrate the feasibility of the proposed multi-objective method in power system current limiters allocation associated with cost,security and stability.